Concept in probability theory
In probability theory  and statistics , two real-valued random variables , 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 uncorrelated  if their covariance , 
  
    
      
        cov 
         
        [ 
        X 
        , 
        Y 
        ] 
        = 
        E 
         
        [ 
        X 
        Y 
        ] 
        − 
        E 
         
        [ 
        X 
        ] 
        E 
         
        [ 
        Y 
        ] 
       
     
    {\displaystyle \operatorname {cov} [X,Y]=\operatorname {E} [XY]-\operatorname {E} [X]\operatorname {E} [Y]} 
   
 
Uncorrelated random variables have a Pearson correlation coefficient , when it exists, of zero, except in the trivial case when either variable has zero variance  (is a constant).  In this case the correlation is undefined.
In general, uncorrelatedness is not the same as orthogonality , except in the special case where at least one of  the two random variables has an expected value  of 0.  In this case, the covariance  is the expectation of the product, and 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 if and only if  
  
    
      
        E 
         
        [ 
        X 
        Y 
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [XY]=0} 
   
 
If 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 independent , with finite second moments , then they are uncorrelated. However, not all uncorrelated variables are independent.[ 1] : p. 155  
Definition for two real random variables [ edit ] Two random variables 
  
    
      
        X 
        , 
        Y 
       
     
    {\displaystyle X,Y} 
   
 
  
    
      
        Cov 
         
        [ 
        X 
        , 
        Y 
        ] 
        = 
        E 
         
        [ 
        ( 
        X 
        − 
        E 
         
        [ 
        X 
        ] 
        ) 
        ( 
        Y 
        − 
        E 
         
        [ 
        Y 
        ] 
        ) 
        ] 
       
     
    {\displaystyle \operatorname {Cov} [X,Y]=\operatorname {E} [(X-\operatorname {E} [X])(Y-\operatorname {E} [Y])]} 
   
 [ 1] : p. 153  [ 2] : p. 121  
  
    
      
        X 
        , 
        Y 
        
           uncorrelated 
         
        ⟺ 
        E 
         
        [ 
        X 
        Y 
        ] 
        = 
        E 
         
        [ 
        X 
        ] 
        ⋅ 
        E 
         
        [ 
        Y 
        ] 
       
     
    {\displaystyle X,Y{\text{ uncorrelated}}\quad \iff \quad \operatorname {E} [XY]=\operatorname {E} [X]\cdot \operatorname {E} [Y]} 
   
 
 
Definition for two complex random variables [ edit ] Two complex random variables  
  
    
      
        Z 
        , 
        W 
       
     
    {\displaystyle Z,W} 
   
 
  
    
      
        
          K 
          
            Z 
            W 
           
         
        = 
        E 
         
        [ 
        ( 
        Z 
        − 
        E 
         
        [ 
        Z 
        ] 
        ) 
        
          
            
              ( 
              W 
              − 
              E 
               
              [ 
              W 
              ] 
              ) 
             
            ¯ 
           
         
        ] 
       
     
    {\displaystyle \operatorname {K} _{ZW}=\operatorname {E} [(Z-\operatorname {E} [Z]){\overline {(W-\operatorname {E} [W])}}]} 
   
 
  
    
      
        
          J 
          
            Z 
            W 
           
         
        = 
        E 
         
        [ 
        ( 
        Z 
        − 
        E 
         
        [ 
        Z 
        ] 
        ) 
        ( 
        W 
        − 
        E 
         
        [ 
        W 
        ] 
        ) 
        ] 
       
     
    {\displaystyle \operatorname {J} _{ZW}=\operatorname {E} [(Z-\operatorname {E} [Z])(W-\operatorname {E} [W])]} 
   
 
  
    
      
        Z 
        , 
        W 
        
           uncorrelated 
         
        ⟺ 
        E 
         
        [ 
        Z 
        
          
            W 
            ¯ 
           
         
        ] 
        = 
        E 
         
        [ 
        Z 
        ] 
        ⋅ 
        E 
         
        [ 
        
          
            W 
            ¯ 
           
         
        ] 
        
           and  
         
        E 
         
        [ 
        Z 
        W 
        ] 
        = 
        E 
         
        [ 
        Z 
        ] 
        ⋅ 
        E 
         
        [ 
        W 
        ] 
       
     
    {\displaystyle Z,W{\text{ uncorrelated}}\quad \iff \quad \operatorname {E} [Z{\overline {W}}]=\operatorname {E} [Z]\cdot \operatorname {E} [{\overline {W}}]{\text{ and }}\operatorname {E} [ZW]=\operatorname {E} [Z]\cdot \operatorname {E} [W]} 
   
 
Definition for more than two random variables [ edit ] A set of two or more random variables 
  
    
      
        
          X 
          
            1 
           
         
        , 
        … 
        , 
        
          X 
          
            n 
           
         
       
     
    {\displaystyle X_{1},\ldots ,X_{n}} 
   
 autocovariance matrix  
  
    
      
        
          K 
          
            
              X 
             
            
              X 
             
           
         
       
     
    {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {X} }} 
   
 random vector  
  
    
      
        
          X 
         
        = 
        [ 
        
          X 
          
            1 
           
         
        … 
        
          X 
          
            n 
           
         
        
          ] 
          
            
              T 
             
           
         
       
     
    {\displaystyle \mathbf {X} =[X_{1}\ldots X_{n}]^{\mathrm {T} }} 
   
 
  
    
      
        
          K 
          
            
              X 
             
            
              X 
             
           
         
        = 
        cov 
         
        [ 
        
          X 
         
        , 
        
          X 
         
        ] 
        = 
        E 
         
        [ 
        ( 
        
          X 
         
        − 
        E 
         
        [ 
        
          X 
         
        ] 
        ) 
        ( 
        
          X 
         
        − 
        E 
         
        [ 
        
          X 
         
        ] 
        ) 
        
          ) 
          
            
              T 
             
           
         
        ] 
        = 
        E 
         
        [ 
        
          X 
         
        
          
            X 
           
          
            T 
           
         
        ] 
        − 
        E 
         
        [ 
        
          X 
         
        ] 
        E 
         
        [ 
        
          X 
         
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {X} }=\operatorname {cov} [\mathbf {X} ,\mathbf {X} ]=\operatorname {E} [(\mathbf {X} -\operatorname {E} [\mathbf {X} ])(\mathbf {X} -\operatorname {E} [\mathbf {X} ]))^{\rm {T}}]=\operatorname {E} [\mathbf {X} \mathbf {X} ^{T}]-\operatorname {E} [\mathbf {X} ]\operatorname {E} [\mathbf {X} ]^{T}} 
   
 Examples of dependence without correlation [ edit ] Let 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  
Let 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 independent  of 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  
Let 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
 
  
    
      
        U 
        = 
        X 
        Y 
       
     
    {\displaystyle U=XY} 
   
  The claim is that 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
Proof:
Taking into account that
  
    
      
        E 
         
        [ 
        U 
        ] 
        = 
        E 
         
        [ 
        X 
        Y 
        ] 
        = 
        E 
         
        [ 
        X 
        ] 
        E 
         
        [ 
        Y 
        ] 
        = 
        E 
         
        [ 
        X 
        ] 
        ⋅ 
        0 
        = 
        0 
        , 
       
     
    {\displaystyle \operatorname {E} [U]=\operatorname {E} [XY]=\operatorname {E} [X]\operatorname {E} [Y]=\operatorname {E} [X]\cdot 0=0,} 
   
 where the second equality holds because 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        
          
            
              
                cov 
                 
                [ 
                U 
                , 
                X 
                ] 
               
              
                = 
                E 
                 
                [ 
                ( 
                U 
                − 
                E 
                 
                [ 
                U 
                ] 
                ) 
                ( 
                X 
                − 
                E 
                 
                [ 
                X 
                ] 
                ) 
                ] 
                = 
                E 
                 
                [ 
                U 
                ( 
                X 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ) 
                ] 
               
             
            
              
                = 
                E 
                 
                [ 
                
                  X 
                  
                    2 
                   
                 
                Y 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                X 
                Y 
                ] 
                = 
                E 
                 
                [ 
                ( 
                
                  X 
                  
                    2 
                   
                 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                X 
                ) 
                Y 
                ] 
                = 
                E 
                 
                [ 
                ( 
                
                  X 
                  
                    2 
                   
                 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                X 
                ) 
                ] 
                E 
                 
                [ 
                Y 
                ] 
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cov} [U,X]&=\operatorname {E} [(U-\operatorname {E} [U])(X-\operatorname {E} [X])]=\operatorname {E} [U(X-{\tfrac {1}{2}})]\\&=\operatorname {E} [X^{2}Y-{\tfrac {1}{2}}XY]=\operatorname {E} [(X^{2}-{\tfrac {1}{2}}X)Y]=\operatorname {E} [(X^{2}-{\tfrac {1}{2}}X)]\operatorname {E} [Y]=0\end{aligned}}} 
   
 Therefore, 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
Independence of 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
  
    
      
        Pr 
        ( 
        U 
        = 
        a 
        ∣ 
        X 
        = 
        b 
        ) 
        = 
        Pr 
        ( 
        U 
        = 
        a 
        ) 
       
     
    {\displaystyle \Pr(U=a\mid X=b)=\Pr(U=a)} 
   
 
  
    
      
        a 
        = 
        1 
       
     
    {\displaystyle a=1} 
   
 
  
    
      
        b 
        = 
        0 
       
     
    {\displaystyle b=0} 
   
 
  
    
      
        Pr 
        ( 
        U 
        = 
        1 
        ∣ 
        X 
        = 
        0 
        ) 
        = 
        Pr 
        ( 
        X 
        Y 
        = 
        1 
        ∣ 
        X 
        = 
        0 
        ) 
        = 
        0 
       
     
    {\displaystyle \Pr(U=1\mid X=0)=\Pr(XY=1\mid X=0)=0} 
   
 
  
    
      
        Pr 
        ( 
        U 
        = 
        1 
        ) 
        = 
        Pr 
        ( 
        X 
        Y 
        = 
        1 
        ) 
        = 
        1 
        
          / 
         
        4 
       
     
    {\displaystyle \Pr(U=1)=\Pr(XY=1)=1/4} 
   
 Thus 
  
    
      
        Pr 
        ( 
        U 
        = 
        1 
        ∣ 
        X 
        = 
        0 
        ) 
        ≠ 
        Pr 
        ( 
        U 
        = 
        1 
        ) 
       
     
    {\displaystyle \Pr(U=1\mid X=0)\neq \Pr(U=1)} 
   
 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
Q.E.D.
If 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 uniformly distributed  on 
  
    
      
        [ 
        − 
        1 
        , 
        1 
        ] 
       
     
    {\displaystyle [-1,1]} 
   
 
  
    
      
        Y 
        = 
        
          X 
          
            2 
           
         
       
     
    {\displaystyle Y=X^{2}} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        
          f 
          
            X 
           
         
        ( 
        t 
        ) 
        = 
        
          
            1 
            2 
           
         
        
          I 
          
            [ 
            − 
            1 
            , 
            1 
            ] 
           
         
        ; 
        
          f 
          
            Y 
           
         
        ( 
        t 
        ) 
        = 
        
          
            1 
            
              2 
              
                
                  t 
                 
               
             
           
         
        
          I 
          
            ] 
            0 
            , 
            1 
            ] 
           
         
       
     
    {\displaystyle f_{X}(t)={1 \over 2}I_{[-1,1]};f_{Y}(t)={1 \over {2{\sqrt {t}}}}I_{]0,1]}} 
   
 
on the other hand, 
  
    
      
        
          f 
          
            X 
            , 
            Y 
           
         
       
     
    {\displaystyle f_{X,Y}} 
   
 
  
    
      
        0 
        < 
        X 
        < 
        Y 
        < 
        1 
       
     
    {\displaystyle 0<X<Y<1} 
   
 
  
    
      
        
          f 
          
            X 
           
         
        × 
        
          f 
          
            Y 
           
         
       
     
    {\displaystyle f_{X}\times f_{Y}} 
   
 
  
    
      
        
          f 
          
            X 
            , 
            Y 
           
         
        ( 
        X 
        , 
        Y 
        ) 
        ≠ 
        
          f 
          
            X 
           
         
        ( 
        X 
        ) 
        × 
        
          f 
          
            Y 
           
         
        ( 
        Y 
        ) 
       
     
    {\displaystyle f_{X,Y}(X,Y)\neq f_{X}(X)\times f_{Y}(Y)} 
   
 
  
    
      
        E 
        [ 
        X 
        ] 
        = 
        
          
            
              1 
              − 
              1 
             
            4 
           
         
        = 
        0 
        ; 
        E 
        [ 
        Y 
        ] 
        = 
        
          
            
              
                1 
                
                  3 
                 
               
              − 
              ( 
              − 
              1 
              
                ) 
                
                  3 
                 
               
             
            
              3 
              × 
              2 
             
           
         
        = 
        
          
            1 
            3 
           
         
       
     
    {\displaystyle E[X]={{1-1} \over 4}=0;E[Y]={{1^{3}-(-1)^{3}} \over {3\times 2}}={1 \over 3}} 
   
 
  
    
      
        C 
        o 
        v 
        [ 
        X 
        , 
        Y 
        ] 
        = 
        E 
        
          [ 
          
            ( 
            X 
            − 
            E 
            [ 
            X 
            ] 
            ) 
            ( 
            Y 
            − 
            E 
            [ 
            Y 
            ] 
            ) 
           
          ] 
         
        = 
        E 
        
          [ 
          
            
              X 
              
                3 
               
             
            − 
            
              
                X 
                3 
               
             
           
          ] 
         
        = 
        
          
            
              
                1 
                
                  4 
                 
               
              − 
              ( 
              − 
              1 
              
                ) 
                
                  4 
                 
               
             
            
              4 
              × 
              2 
             
           
         
        = 
        0 
       
     
    {\displaystyle Cov[X,Y]=E\left[(X-E[X])(Y-E[Y])\right]=E\left[X^{3}-{X \over 3}\right]={{1^{4}-(-1)^{4}} \over {4\times 2}}=0} 
   
 
Therefore the variables are uncorrelated.
There are cases in which uncorrelatedness does imply independence. One of these cases is the one in which both random variables are two-valued (so each can be linearly transformed to have a Bernoulli distribution ).[ 3] jointly normally distributed  random variables are independent if they are uncorrelated,[ 4] joint distribution  is not joint normal (see Normally distributed and uncorrelated does not imply independent ).
Two random vectors  
  
    
      
        
          X 
         
        = 
        ( 
        
          X 
          
            1 
           
         
        , 
        … 
        , 
        
          X 
          
            m 
           
         
        
          ) 
          
            T 
           
         
       
     
    {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{m})^{T}} 
   
 
  
    
      
        
          Y 
         
        = 
        ( 
        
          Y 
          
            1 
           
         
        , 
        … 
        , 
        
          Y 
          
            n 
           
         
        
          ) 
          
            T 
           
         
       
     
    {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{T}} 
   
 
  
    
      
        E 
         
        [ 
        
          X 
         
        
          
            Y 
           
          
            T 
           
         
        ] 
        = 
        E 
         
        [ 
        
          X 
         
        ] 
        E 
         
        [ 
        
          Y 
         
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle \operatorname {E} [\mathbf {X} \mathbf {Y} ^{T}]=\operatorname {E} [\mathbf {X} ]\operatorname {E} [\mathbf {Y} ]^{T}} 
   
 They are uncorrelated if and only if their cross-covariance matrix  
  
    
      
        
          K 
          
            
              X 
             
            
              Y 
             
           
         
       
     
    {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} 
   
 [ 5] : p.337  
Two complex random vectors 
  
    
      
        
          Z 
         
       
     
    {\displaystyle \mathbf {Z} } 
   
 
  
    
      
        
          W 
         
       
     
    {\displaystyle \mathbf {W} } 
   
 uncorrelated  if their cross-covariance matrix and their pseudo-cross-covariance matrix is zero, i.e. if
  
    
      
        
          K 
          
            
              Z 
             
            
              W 
             
           
         
        = 
        
          J 
          
            
              Z 
             
            
              W 
             
           
         
        = 
        0 
       
     
    {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {J} _{\mathbf {Z} \mathbf {W} }=0} 
   
 where
  
    
      
        
          K 
          
            
              Z 
             
            
              W 
             
           
         
        = 
        E 
         
        [ 
        ( 
        
          Z 
         
        − 
        E 
         
        [ 
        
          Z 
         
        ] 
        ) 
        
          
            ( 
            
              W 
             
            − 
            E 
             
            [ 
            
              W 
             
            ] 
            ) 
           
          
            
              H 
             
           
         
        ] 
       
     
    {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ]){(\mathbf {W} -\operatorname {E} [\mathbf {W} ])}^{\mathrm {H} }]} 
   
 and
  
    
      
        
          J 
          
            
              Z 
             
            
              W 
             
           
         
        = 
        E 
         
        [ 
        ( 
        
          Z 
         
        − 
        E 
         
        [ 
        
          Z 
         
        ] 
        ) 
        
          
            ( 
            
              W 
             
            − 
            E 
             
            [ 
            
              W 
             
            ] 
            ) 
           
          
            
              T 
             
           
         
        ] 
       
     
    {\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ]){(\mathbf {W} -\operatorname {E} [\mathbf {W} ])}^{\mathrm {T} }]} 
   
 Two stochastic processes  
  
    
      
        
          { 
          
            X 
            
              t 
             
           
          } 
         
       
     
    {\displaystyle \left\{X_{t}\right\}} 
   
 
  
    
      
        
          { 
          
            Y 
            
              t 
             
           
          } 
         
       
     
    {\displaystyle \left\{Y_{t}\right\}} 
   
 uncorrelated  if their cross-covariance 
  
    
      
        
          K 
          
            
              X 
             
            
              Y 
             
           
         
         
        ( 
        
          t 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        ) 
        = 
        E 
         
        
          [ 
          
            
              ( 
              
                X 
                ( 
                
                  t 
                  
                    1 
                   
                 
                ) 
                − 
                
                  μ 
                  
                    X 
                   
                 
                ( 
                
                  t 
                  
                    1 
                   
                 
                ) 
               
              ) 
             
            
              ( 
              
                Y 
                ( 
                
                  t 
                  
                    2 
                   
                 
                ) 
                − 
                
                  μ 
                  
                    Y 
                   
                 
                ( 
                
                  t 
                  
                    2 
                   
                 
                ) 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} \left[\left(X(t_{1})-\mu _{X}(t_{1})\right)\left(Y(t_{2})-\mu _{Y}(t_{2})\right)\right]} 
   
 [ 2] : p. 142  
  
    
      
        
          { 
          
            X 
            
              t 
             
           
          } 
         
        , 
        
          { 
          
            Y 
            
              t 
             
           
          } 
         
        
           uncorrelated 
         
        : 
        ⟺ 
        ∀ 
        
          t 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        : 
        
          K 
          
            
              X 
             
            
              Y 
             
           
         
         
        ( 
        
          t 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        ) 
        = 
        0 
       
     
    {\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ uncorrelated}}\quad :\iff \quad \forall t_{1},t_{2}\colon \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0} 
   
 
^ a b   Papoulis, Athanasios (1991). Probability, Random Variables and Stochastic Processes . MCGraw Hill. ISBN  0-07-048477-5  ^ a b   Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3 
^ Virtual Laboratories in Probability and Statistics: Covariance and Correlation , item 17.^ Bain, Lee; Engelhardt, Max (1992). "Chapter 5.5 Conditional Expectation". Introduction to Probability and Mathematical Statistics  (2nd ed.). pp. 185– 186. ISBN  0534929303  ^ Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers . Cambridge University Press. ISBN  978-0-521-86470-1