Concept in probability theory and statistics
In probability theory  and statistics , complex random variables  are a generalization of real-valued random variables  to complex numbers , i.e. the possible values a complex random variable may take are complex numbers.[ 1] distribution  of one complex random variable may be interpreted as the joint distribution  of two real random variables.
Some concepts of real random variables have a straightforward generalization to complex random variables—e.g., the definition of the mean  of a complex random variable. Other concepts are unique to complex random variables.
Applications of complex random variables are found in digital signal processing ,[ 2] quadrature amplitude modulation  and information theory .
A complex random variable 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 probability space  
  
    
      
        ( 
        Ω 
        , 
        
          
            F 
           
         
        , 
        P 
        ) 
       
     
    {\displaystyle (\Omega ,{\mathcal {F}},P)} 
   
 function  
  
    
      
        Z 
        : 
        Ω 
        → 
        
          C 
         
       
     
    {\displaystyle Z\colon \Omega \rightarrow \mathbb {C} } 
   
 
  
    
      
        ℜ 
        
          ( 
          Z 
          ) 
         
       
     
    {\displaystyle \Re {(Z)}} 
   
 
  
    
      
        ℑ 
        
          ( 
          Z 
          ) 
         
       
     
    {\displaystyle \Im {(Z)}} 
   
 random variables  on 
  
    
      
        ( 
        Ω 
        , 
        
          
            F 
           
         
        , 
        P 
        ) 
       
     
    {\displaystyle (\Omega ,{\mathcal {F}},P)} 
   
 
Consider a random variable that may take only the three complex values 
  
    
      
        1 
        + 
        i 
        , 
        1 
        − 
        i 
        , 
        2 
       
     
    {\displaystyle 1+i,1-i,2} 
   
 
Probability 
  
    
      
        P 
        ( 
        z 
        ) 
       
     
    {\displaystyle P(z)} 
   
  
Value 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
   
  
    
      
        
          
            1 
            4 
           
         
       
     
    {\displaystyle {\frac {1}{4}}} 
   
 
  
    
      
        1 
        + 
        i 
       
     
    {\displaystyle 1+i} 
   
  
  
    
      
        
          
            1 
            4 
           
         
       
     
    {\displaystyle {\frac {1}{4}}} 
   
 
  
    
      
        1 
        − 
        i 
       
     
    {\displaystyle 1-i} 
   
  
  
    
      
        
          
            1 
            2 
           
         
       
     
    {\displaystyle {\frac {1}{2}}} 
   
 
  
    
      
        2 
       
     
    {\displaystyle 2} 
   
  
The expectation  of this random variable may be simply calculated:
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        
          
            1 
            4 
           
         
        ( 
        1 
        + 
        i 
        ) 
        + 
        
          
            1 
            4 
           
         
        ( 
        1 
        − 
        i 
        ) 
        + 
        
          
            1 
            2 
           
         
        2 
        = 
        
          
            3 
            2 
           
         
        . 
       
     
    {\displaystyle \operatorname {E} [Z]={\frac {1}{4}}(1+i)+{\frac {1}{4}}(1-i)+{\frac {1}{2}}2={\frac {3}{2}}.} 
   
 
Another example of a complex random variable is the uniform distribution over the filled unit circle, i.e. the set 
  
    
      
        { 
        z 
        ∈ 
        
          C 
         
        ∣ 
        
          | 
         
        z 
        
          | 
         
        ≤ 
        1 
        } 
       
     
    {\displaystyle \{z\in \mathbb {C} \mid |z|\leq 1\}} 
   
 probability density function  is defined. The density function is shown as the yellow disk and dark blue base in the following figure.
Complex normal distribution [ edit ] Complex Gaussian random variables are often encountered in applications. They are a straightforward generalization of real Gaussian random variables. The following plot shows an example of the distribution of such a variable.
Cumulative distribution function [ edit ] The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form 
  
    
      
        P 
        ( 
        Z 
        ≤ 
        1 
        + 
        3 
        i 
        ) 
       
     
    {\displaystyle P(Z\leq 1+3i)} 
   
 
  
    
      
        P 
        ( 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        1 
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        3 
        ) 
       
     
    {\displaystyle P(\Re {(Z)}\leq 1,\Im {(Z)}\leq 3)} 
   
 
  
    
      
        
          F 
          
            Z 
           
         
        : 
        
          C 
         
        → 
        [ 
        0 
        , 
        1 
        ] 
       
     
    {\displaystyle F_{Z}:\mathbb {C} \to [0,1]} 
   
 joint distribution  of their real and imaginary parts:
  
    
      
        
          F 
          
            Z 
           
         
        ( 
        z 
        ) 
        = 
        
          F 
          
            ℜ 
            
              ( 
              Z 
              ) 
             
            , 
            ℑ 
            
              ( 
              Z 
              ) 
             
           
         
        ( 
        ℜ 
        
          ( 
          z 
          ) 
         
        , 
        ℑ 
        
          ( 
          z 
          ) 
         
        ) 
        = 
        P 
        ( 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        ℜ 
        
          ( 
          z 
          ) 
         
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        ℑ 
        
          ( 
          z 
          ) 
         
        ) 
       
     
    {\displaystyle F_{Z}(z)=F_{\Re {(Z)},\Im {(Z)}}(\Re {(z)},\Im {(z)})=P(\Re {(Z)}\leq \Re {(z)},\Im {(Z)}\leq \Im {(z)})} 
   
 Eq.1 
 
Probability  density function [ edit ] The probability density function of a complex random variable is defined as 
  
    
      
        
          f 
          
            Z 
           
         
        ( 
        z 
        ) 
        = 
        
          f 
          
            ℜ 
            
              ( 
              Z 
              ) 
             
            , 
            ℑ 
            
              ( 
              Z 
              ) 
             
           
         
        ( 
        ℜ 
        
          ( 
          z 
          ) 
         
        , 
        ℑ 
        
          ( 
          z 
          ) 
         
        ) 
       
     
    {\displaystyle f_{Z}(z)=f_{\Re {(Z)},\Im {(Z)}}(\Re {(z)},\Im {(z)})} 
   
 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
  
    
      
        ( 
        ℜ 
        
          ( 
          z 
          ) 
         
        , 
        ℑ 
        
          ( 
          z 
          ) 
         
        ) 
       
     
    {\displaystyle (\Re {(z)},\Im {(z)})} 
   
 
An equivalent definition is given by 
  
    
      
        
          f 
          
            Z 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              ∂ 
              
                2 
               
             
            
              ∂ 
              x 
              ∂ 
              y 
             
           
         
        P 
        ( 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        x 
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ≤ 
        y 
        ) 
       
     
    {\displaystyle f_{Z}(z)={\frac {\partial ^{2}}{\partial x\partial y}}P(\Re {(Z)}\leq x,\Im {(Z)}\leq y)} 
   
 
  
    
      
        x 
        = 
        ℜ 
        
          ( 
          z 
          ) 
         
       
     
    {\displaystyle x=\Re {(z)}} 
   
 
  
    
      
        y 
        = 
        ℑ 
        
          ( 
          z 
          ) 
         
       
     
    {\displaystyle y=\Im {(z)}} 
   
 
As in the real case the density function may not exist.
The expectation of a complex random variable is defined based on the definition of the expectation of a real random variable:[ 3] : p. 112  
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        E 
         
        [ 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ] 
        + 
        i 
        E 
         
        [ 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ] 
       
     
    {\displaystyle \operatorname {E} [Z]=\operatorname {E} [\Re {(Z)}]+i\operatorname {E} [\Im {(Z)}]} 
   
 Eq.2 
 
Note that the expectation of a complex random variable does not exist if 
  
    
      
        E 
         
        [ 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ] 
       
     
    {\displaystyle \operatorname {E} [\Re {(Z)}]} 
   
 
  
    
      
        E 
         
        [ 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ] 
       
     
    {\displaystyle \operatorname {E} [\Im {(Z)}]} 
   
 
If the complex random variable 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        
          f 
          
            Z 
           
         
        ( 
        z 
        ) 
       
     
    {\displaystyle f_{Z}(z)} 
   
 
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        
          ∬ 
          
            
              C 
             
           
         
        z 
        ⋅ 
        
          f 
          
            Z 
           
         
        ( 
        z 
        ) 
        d 
        x 
        d 
        y 
       
     
    {\displaystyle \operatorname {E} [Z]=\iint _{\mathbb {C} }z\cdot f_{Z}(z)\,dx\,dy} 
   
 
If the complex random variable 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 probability mass function  
  
    
      
        
          p 
          
            Z 
           
         
        ( 
        z 
        ) 
       
     
    {\displaystyle p_{Z}(z)} 
   
 
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        
          ∑ 
          
            z 
            ∈ 
            
              Z 
             
           
         
        z 
        ⋅ 
        
          p 
          
            Z 
           
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \operatorname {E} [Z]=\sum _{z\in \mathbb {Z} }z\cdot p_{Z}(z)} 
   
 
Properties Whenever the expectation of a complex random variable exists, taking the expectation and complex conjugation  commute:
  
    
      
        
          
            
              E 
               
              [ 
              Z 
              ] 
             
            ¯ 
           
         
        = 
        E 
         
        [ 
        
          
            Z 
            ¯ 
           
         
        ] 
        . 
       
     
    {\displaystyle {\overline {\operatorname {E} [Z]}}=\operatorname {E} [{\overline {Z}}].} 
   
 The expected value operator  
  
    
      
        E 
         
        [ 
        ⋅ 
        ] 
       
     
    {\displaystyle \operatorname {E} [\cdot ]} 
   
 linear  in the sense that
  
    
      
        E 
         
        [ 
        a 
        Z 
        + 
        b 
        W 
        ] 
        = 
        a 
        E 
         
        [ 
        Z 
        ] 
        + 
        b 
        E 
         
        [ 
        W 
        ] 
       
     
    {\displaystyle \operatorname {E} [aZ+bW]=a\operatorname {E} [Z]+b\operatorname {E} [W]} 
   
 for any complex coefficients 
  
    
      
        a 
        , 
        b 
       
     
    {\displaystyle a,b} 
   
 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        W 
       
     
    {\displaystyle W} 
   
 independent .
Variance and pseudo-variance [ edit ] The variance is defined in terms of absolute squares  as:[ 3] : 117  
  
    
      
        
          K 
          
            Z 
            Z 
           
         
        = 
        Var 
         
        [ 
        Z 
        ] 
        = 
        E 
         
        
          [ 
          
            
              | 
              
                Z 
                − 
                E 
                 
                [ 
                Z 
                ] 
               
              | 
             
            
              2 
             
           
          ] 
         
        = 
        E 
         
        [ 
        
          | 
         
        Z 
        
          
            | 
           
          
            2 
           
         
        ] 
        − 
        
          
            | 
            
              E 
               
              [ 
              Z 
              ] 
             
            | 
           
          
            2 
           
         
       
     
    {\displaystyle \operatorname {K} _{ZZ}=\operatorname {Var} [Z]=\operatorname {E} \left[\left|Z-\operatorname {E} [Z]\right|^{2}\right]=\operatorname {E} [|Z|^{2}]-\left|\operatorname {E} [Z]\right|^{2}} 
   
 Eq.3 
 
Properties The variance is always a nonnegative real number. It is equal to the sum of the variances of the real and imaginary part of the complex random variable:
  
    
      
        Var 
         
        [ 
        Z 
        ] 
        = 
        Var 
         
        [ 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ] 
        + 
        Var 
         
        [ 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ] 
        . 
       
     
    {\displaystyle \operatorname {Var} [Z]=\operatorname {Var} [\Re {(Z)}]+\operatorname {Var} [\Im {(Z)}].} 
   
 The variance of a linear combination of complex random variables may be calculated using the following formula:
  
    
      
        Var 
         
        
          [ 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                N 
               
             
            
              a 
              
                k 
               
             
            
              Z 
              
                k 
               
             
           
          ] 
         
        = 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            N 
           
         
        
          ∑ 
          
            j 
            = 
            1 
           
          
            N 
           
         
        
          a 
          
            i 
           
         
        
          
            
              a 
              
                j 
               
             
            ¯ 
           
         
        Cov 
         
        [ 
        
          Z 
          
            i 
           
         
        , 
        
          Z 
          
            j 
           
         
        ] 
        . 
       
     
    {\displaystyle \operatorname {Var} \left[\sum _{k=1}^{N}a_{k}Z_{k}\right]=\sum _{i=1}^{N}\sum _{j=1}^{N}a_{i}{\overline {a_{j}}}\operatorname {Cov} [Z_{i},Z_{j}].} 
   
 The pseudo-variance  is a special case of the pseudo-covariance  and is defined in terms of ordinary complex squares , given by:
  
    
      
        
          J 
          
            Z 
            Z 
           
         
        = 
        E 
         
        [ 
        ( 
        Z 
        − 
        E 
         
        [ 
        Z 
        ] 
        
          ) 
          
            2 
           
         
        ] 
        = 
        E 
         
        [ 
        
          Z 
          
            2 
           
         
        ] 
        − 
        ( 
        E 
         
        [ 
        Z 
        ] 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle \operatorname {J} _{ZZ}=\operatorname {E} [(Z-\operatorname {E} [Z])^{2}]=\operatorname {E} [Z^{2}]-(\operatorname {E} [Z])^{2}} 
   
 Eq.4 
 
Unlike the variance of 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
Covariance matrix of real and imaginary parts [ edit ] For a general complex random variable, the pair 
  
    
      
        ( 
        ℜ 
        
          ( 
          Z 
          ) 
         
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ) 
       
     
    {\displaystyle (\Re {(Z)},\Im {(Z)})} 
   
 covariance matrix  of the form:
  
    
      
        
          
            [ 
            
              
                
                  Var 
                   
                  [ 
                  ℜ 
                  
                    ( 
                    Z 
                    ) 
                   
                  ] 
                 
                
                  Cov 
                   
                  [ 
                  ℑ 
                  
                    ( 
                    Z 
                    ) 
                   
                  , 
                  ℜ 
                  
                    ( 
                    Z 
                    ) 
                   
                  ] 
                 
               
              
                
                  Cov 
                   
                  [ 
                  ℜ 
                  
                    ( 
                    Z 
                    ) 
                   
                  , 
                  ℑ 
                  
                    ( 
                    Z 
                    ) 
                   
                  ] 
                 
                
                  Var 
                   
                  [ 
                  ℑ 
                  
                    ( 
                    Z 
                    ) 
                   
                  ] 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\begin{bmatrix}\operatorname {Var} [\Re {(Z)}]&\operatorname {Cov} [\Im {(Z)},\Re {(Z)}]\\\operatorname {Cov} [\Re {(Z)},\Im {(Z)}]&\operatorname {Var} [\Im {(Z)}]\end{bmatrix}}} 
   
 The matrix is symmetric, so 
  
    
      
        Cov 
         
        [ 
        ℜ 
        
          ( 
          Z 
          ) 
         
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ] 
        = 
        Cov 
         
        [ 
        ℑ 
        
          ( 
          Z 
          ) 
         
        , 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ] 
       
     
    {\displaystyle \operatorname {Cov} [\Re {(Z)},\Im {(Z)}]=\operatorname {Cov} [\Im {(Z)},\Re {(Z)}]} 
   
 
Its elements equal:
  
    
      
        
          
            
              
                Var 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                Re 
                 
                ( 
                
                  K 
                  
                    Z 
                    Z 
                   
                 
                + 
                
                  J 
                  
                    Z 
                    Z 
                   
                 
                ) 
               
             
            
              
                Var 
                 
                [ 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                Re 
                 
                ( 
                
                  K 
                  
                    Z 
                    Z 
                   
                 
                − 
                
                  J 
                  
                    Z 
                    Z 
                   
                 
                ) 
               
             
            
              
                Cov 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                , 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                Im 
                 
                ( 
                
                  J 
                  
                    Z 
                    Z 
                   
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\operatorname {Var} [\Re {(Z)}]={\tfrac {1}{2}}\operatorname {Re} (\operatorname {K} _{ZZ}+\operatorname {J} _{ZZ})\\&\operatorname {Var} [\Im {(Z)}]={\tfrac {1}{2}}\operatorname {Re} (\operatorname {K} _{ZZ}-\operatorname {J} _{ZZ})\\&\operatorname {Cov} [\Re {(Z)},\Im {(Z)}]={\tfrac {1}{2}}\operatorname {Im} (\operatorname {J} _{ZZ})\\\end{aligned}}} 
   
 Conversely:
  
    
      
        
          
            
              
                
                  K 
                  
                    Z 
                    Z 
                   
                 
                = 
                Var 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                + 
                Var 
                 
                [ 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
               
             
            
              
                
                  J 
                  
                    Z 
                    Z 
                   
                 
                = 
                Var 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                − 
                Var 
                 
                [ 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                + 
                i 
                2 
                Cov 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                , 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\operatorname {K} _{ZZ}=\operatorname {Var} [\Re {(Z)}]+\operatorname {Var} [\Im {(Z)}]\\&\operatorname {J} _{ZZ}=\operatorname {Var} [\Re {(Z)}]-\operatorname {Var} [\Im {(Z)}]+i2\operatorname {Cov} [\Re {(Z)},\Im {(Z)}]\end{aligned}}} 
   
 Covariance and pseudo-covariance [ edit ] The covariance  between two complex random variables 
  
    
      
        Z 
        , 
        W 
       
     
    {\displaystyle Z,W} 
   
 [ 3] : 119  
  
    
      
        
          K 
          
            Z 
            W 
           
         
        = 
        Cov 
         
        [ 
        Z 
        , 
        W 
        ] 
        = 
        E 
         
        [ 
        ( 
        Z 
        − 
        E 
         
        [ 
        Z 
        ] 
        ) 
        
          
            
              ( 
              W 
              − 
              E 
               
              [ 
              W 
              ] 
              ) 
             
            ¯ 
           
         
        ] 
        = 
        E 
         
        [ 
        Z 
        
          
            W 
            ¯ 
           
         
        ] 
        − 
        E 
         
        [ 
        Z 
        ] 
        E 
         
        [ 
        
          
            W 
            ¯ 
           
         
        ] 
       
     
    {\displaystyle \operatorname {K} _{ZW}=\operatorname {Cov} [Z,W]=\operatorname {E} [(Z-\operatorname {E} [Z]){\overline {(W-\operatorname {E} [W])}}]=\operatorname {E} [Z{\overline {W}}]-\operatorname {E} [Z]\operatorname {E} [{\overline {W}}]} 
   
 Eq.5 
 
Notice the complex conjugation of the second factor in the definition.
pseudo-covariance  (also called complementary variance ):
  
    
      
        
          J 
          
            Z 
            W 
           
         
        = 
        Cov 
         
        [ 
        Z 
        , 
        
          
            W 
            ¯ 
           
         
        ] 
        = 
        E 
         
        [ 
        ( 
        Z 
        − 
        E 
         
        [ 
        Z 
        ] 
        ) 
        ( 
        W 
        − 
        E 
         
        [ 
        W 
        ] 
        ) 
        ] 
        = 
        E 
         
        [ 
        Z 
        W 
        ] 
        − 
        E 
         
        [ 
        Z 
        ] 
        E 
         
        [ 
        W 
        ] 
       
     
    {\displaystyle \operatorname {J} _{ZW}=\operatorname {Cov} [Z,{\overline {W}}]=\operatorname {E} [(Z-\operatorname {E} [Z])(W-\operatorname {E} [W])]=\operatorname {E} [ZW]-\operatorname {E} [Z]\operatorname {E} [W]} 
   
 Eq.6 
 
The second order statistics are fully characterized by the covariance and the pseudo-covariance.
Properties The covariance has the following properties:
  
    
      
        Cov 
         
        [ 
        Z 
        , 
        W 
        ] 
        = 
        
          
            
              Cov 
               
              [ 
              W 
              , 
              Z 
              ] 
             
            ¯ 
           
         
       
     
    {\displaystyle \operatorname {Cov} [Z,W]={\overline {\operatorname {Cov} [W,Z]}}} 
   
 
  
    
      
        Cov 
         
        [ 
        α 
        Z 
        , 
        W 
        ] 
        = 
        α 
        Cov 
         
        [ 
        Z 
        , 
        W 
        ] 
       
     
    {\displaystyle \operatorname {Cov} [\alpha Z,W]=\alpha \operatorname {Cov} [Z,W]} 
   
 
  
    
      
        Cov 
         
        [ 
        Z 
        , 
        α 
        W 
        ] 
        = 
        
          
            α 
            ¯ 
           
         
        Cov 
         
        [ 
        Z 
        , 
        W 
        ] 
       
     
    {\displaystyle \operatorname {Cov} [Z,\alpha W]={\overline {\alpha }}\operatorname {Cov} [Z,W]} 
   
 
  
    
      
        Cov 
         
        [ 
        
          Z 
          
            1 
           
         
        + 
        
          Z 
          
            2 
           
         
        , 
        W 
        ] 
        = 
        Cov 
         
        [ 
        
          Z 
          
            1 
           
         
        , 
        W 
        ] 
        + 
        Cov 
         
        [ 
        
          Z 
          
            2 
           
         
        , 
        W 
        ] 
       
     
    {\displaystyle \operatorname {Cov} [Z_{1}+Z_{2},W]=\operatorname {Cov} [Z_{1},W]+\operatorname {Cov} [Z_{2},W]} 
   
 
  
    
      
        Cov 
         
        [ 
        Z 
        , 
        
          W 
          
            1 
           
         
        + 
        
          W 
          
            2 
           
         
        ] 
        = 
        Cov 
         
        [ 
        Z 
        , 
        
          W 
          
            1 
           
         
        ] 
        + 
        Cov 
         
        [ 
        Z 
        , 
        
          W 
          
            2 
           
         
        ] 
       
     
    {\displaystyle \operatorname {Cov} [Z,W_{1}+W_{2}]=\operatorname {Cov} [Z,W_{1}]+\operatorname {Cov} [Z,W_{2}]} 
   
 
  
    
      
        Cov 
         
        [ 
        Z 
        , 
        Z 
        ] 
        = 
        
          Var 
           
          [ 
          Z 
          ] 
         
       
     
    {\displaystyle \operatorname {Cov} [Z,Z]={\operatorname {Var} [Z]}} 
   
 Uncorrelatedness: two complex random variables 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        W 
       
     
    {\displaystyle W} 
   
 uncorrelated  if 
  
    
      
        
          K 
          
            Z 
            W 
           
         
        = 
        
          J 
          
            Z 
            W 
           
         
        = 
        0 
       
     
    {\displaystyle \operatorname {K} _{ZW}=\operatorname {J} _{ZW}=0} 
   
 uncorrelatedness (probability theory) ). 
Orthogonality: two complex random variables 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        W 
       
     
    {\displaystyle W} 
   
 orthogonal  if 
  
    
      
        E 
         
        [ 
        Z 
        
          
            W 
            ¯ 
           
         
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [Z{\overline {W}}]=0} 
   
  Circular symmetry of complex random variables is a common assumption used in the field of wireless communication. A typical example of a circular symmetric complex random variable is the complex Gaussian random variable  with zero mean and zero pseudo-covariance matrix.
A complex random variable 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        ϕ 
        ∈ 
        [ 
        − 
        π 
        , 
        π 
        ] 
       
     
    {\displaystyle \phi \in [-\pi ,\pi ]} 
   
 
  
    
      
        
          e 
          
            
              i 
             
            ϕ 
           
         
        Z 
       
     
    {\displaystyle e^{\mathrm {i} \phi }Z} 
   
 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
Properties By definition, a circularly symmetric complex random variable has
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        E 
         
        [ 
        
          e 
          
            
              i 
             
            ϕ 
           
         
        Z 
        ] 
        = 
        
          e 
          
            
              i 
             
            ϕ 
           
         
        E 
         
        [ 
        Z 
        ] 
       
     
    {\displaystyle \operatorname {E} [Z]=\operatorname {E} [e^{\mathrm {i} \phi }Z]=e^{\mathrm {i} \phi }\operatorname {E} [Z]} 
   
 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 
Thus the expectation of a circularly symmetric complex random variable can only be either zero or undefined.
Additionally,
  
    
      
        E 
         
        [ 
        Z 
        Z 
        ] 
        = 
        E 
         
        [ 
        
          e 
          
            
              i 
             
            ϕ 
           
         
        Z 
        
          e 
          
            
              i 
             
            ϕ 
           
         
        Z 
        ] 
        = 
        
          e 
          
            
              2 
             
            i 
            ϕ 
           
         
        E 
         
        [ 
        Z 
        Z 
        ] 
       
     
    {\displaystyle \operatorname {E} [ZZ]=\operatorname {E} [e^{\mathrm {i} \phi }Ze^{\mathrm {i} \phi }Z]=e^{\mathrm {2} i\phi }\operatorname {E} [ZZ]} 
   
 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 
Thus the pseudo-variance of a circularly symmetric complex random variable can only be zero.
If 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        
          e 
          
            
              i 
             
            ϕ 
           
         
        Z 
       
     
    {\displaystyle e^{\mathrm {i} \phi }Z} 
   
 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        [ 
        − 
        π 
        , 
        π 
        ] 
       
     
    {\displaystyle [-\pi ,\pi ]} 
   
 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 [ 4] 
Proper complex random variables [ edit ] The concept of proper random variables is unique to complex random variables, and has no correspondent concept with real random variables.
A complex random variable 
  
    
      
        Z 
       
     
    {\displaystyle Z} 
   
 
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [Z]=0} 
   
 
  
    
      
        Var 
         
        [ 
        Z 
        ] 
        < 
        ∞ 
       
     
    {\displaystyle \operatorname {Var} [Z]<\infty } 
   
 
  
    
      
        E 
         
        [ 
        
          Z 
          
            2 
           
         
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [Z^{2}]=0} 
   
 This definition is equivalent to the following conditions. This means that a complex random variable is proper if, and only if:
  
    
      
        E 
         
        [ 
        Z 
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [Z]=0} 
   
 
  
    
      
        E 
         
        [ 
        ℜ 
        
          
            ( 
            Z 
            ) 
           
          
            2 
           
         
        ] 
        = 
        E 
         
        [ 
        ℑ 
        
          
            ( 
            Z 
            ) 
           
          
            2 
           
         
        ] 
        ≠ 
        ∞ 
       
     
    {\displaystyle \operatorname {E} [\Re {(Z)}^{2}]=\operatorname {E} [\Im {(Z)}^{2}]\neq \infty } 
   
 
  
    
      
        E 
         
        [ 
        ℜ 
        
          ( 
          Z 
          ) 
         
        ℑ 
        
          ( 
          Z 
          ) 
         
        ] 
        = 
        0 
       
     
    {\displaystyle \operatorname {E} [\Re {(Z)}\Im {(Z)}]=0} 
   
 
Theorem — Every circularly symmetric complex random variable with finite variance is proper.
 
For a proper complex random variable, the covariance matrix of the pair 
  
    
      
        ( 
        ℜ 
        
          ( 
          Z 
          ) 
         
        , 
        ℑ 
        
          ( 
          Z 
          ) 
         
        ) 
       
     
    {\displaystyle (\Re {(Z)},\Im {(Z)})} 
   
 
  
    
      
        
          
            [ 
            
              
                
                  
                    
                      1 
                      2 
                     
                   
                  Var 
                   
                  [ 
                  Z 
                  ] 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                  Var 
                   
                  [ 
                  Z 
                  ] 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\begin{bmatrix}{\frac {1}{2}}\operatorname {Var} [Z]&0\\0&{\frac {1}{2}}\operatorname {Var} [Z]\end{bmatrix}}} 
   
 I.e.:
  
    
      
        
          
            
              
                Var 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                Var 
                 
                [ 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                Var 
                 
                [ 
                Z 
                ] 
               
             
            
              
                Cov 
                 
                [ 
                ℜ 
                
                  ( 
                  Z 
                  ) 
                 
                , 
                ℑ 
                
                  ( 
                  Z 
                  ) 
                 
                ] 
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\operatorname {Var} [\Re {(Z)}]=\operatorname {Var} [\Im {(Z)}]={\tfrac {1}{2}}\operatorname {Var} [Z]\\&\operatorname {Cov} [\Re {(Z)},\Im {(Z)}]=0\\\end{aligned}}} 
   
 [ edit ] The Cauchy–Schwarz inequality  for complex random variables, which can be derived using the Triangle inequality  and Hölder's inequality , is
  
    
      
        
          
            | 
            
              E 
               
              
                [ 
                
                  Z 
                  
                    
                      W 
                      ¯ 
                     
                   
                 
                ] 
               
             
            | 
           
          
            2 
           
         
        ≤ 
        
          
            | 
            
              E 
               
              
                [ 
                
                  | 
                  
                    Z 
                    
                      
                        W 
                        ¯ 
                       
                     
                   
                  | 
                 
                ] 
               
             
            | 
           
          
            2 
           
         
        ≤ 
        E 
         
        
          [ 
          
            
              | 
             
            Z 
            
              
                | 
               
              
                2 
               
             
           
          ] 
         
        E 
         
        
          [ 
          
            
              | 
             
            W 
            
              
                | 
               
              
                2 
               
             
           
          ] 
         
       
     
    {\displaystyle \left|\operatorname {E} \left[Z{\overline {W}}\right]\right|^{2}\leq \left|\operatorname {E} \left[\left|Z{\overline {W}}\right|\right]\right|^{2}\leq \operatorname {E} \left[|Z|^{2}\right]\operatorname {E} \left[|W|^{2}\right]} 
   
 Characteristic function [ edit ] The characteristic function  of a complex random variable is a function 
  
    
      
        
          C 
         
        → 
        
          C 
         
       
     
    {\displaystyle \mathbb {C} \to \mathbb {C} } 
   
 
  
    
      
        
          φ 
          
            Z 
           
         
        ( 
        ω 
        ) 
        = 
        E 
         
        
          [ 
          
            e 
            
              i 
              ℜ 
              
                ( 
                
                  
                    ω 
                    ¯ 
                   
                 
                Z 
                ) 
               
             
           
          ] 
         
        = 
        E 
         
        
          [ 
          
            e 
            
              i 
              ( 
              ℜ 
              
                ( 
                ω 
                ) 
               
              ℜ 
              
                ( 
                Z 
                ) 
               
              + 
              ℑ 
              
                ( 
                ω 
                ) 
               
              ℑ 
              
                ( 
                Z 
                ) 
               
              ) 
             
           
          ] 
         
        . 
       
     
    {\displaystyle \varphi _{Z}(\omega )=\operatorname {E} \left[e^{i\Re {({\overline {\omega }}Z)}}\right]=\operatorname {E} \left[e^{i(\Re {(\omega )}\Re {(Z)}+\Im {(\omega )}\Im {(Z)})}\right].} 
   
 
^ Eriksson, Jan; Ollila, Esa; Koivunen, Visa (2009). Statistics for complex random variables revisited . 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan: Institute of Electrical and Electronics Engineers . pp. 3565– 3568. doi :10.1109/ICASSP.2009.4960396 . ^ Lapidoth, A. (2009). A Foundation in Digital Communication . Cambridge University Press. ISBN  9780521193955  ^ a b c   Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications . Springer. ISBN  978-3-319-68074-3  ^ Peter J. Schreier, Louis L. Scharf (2011). Statistical Signal Processing of Complex-Valued Data . Cambridge University Press. ISBN  9780511815911