Přeskočit na obsah

Lanthan

Z Wikipedie, otevřené encyklopedie
Lanthan
  [Xe] 5d1 6s2
  La
57
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Obecné
Název, značka, číslo Lanthan, La, 57
Cizojazyčné názvy lat. Lanthanum
Skupina, perioda, blok 3. skupina, 6. perioda, blok d
Chemická skupina Lanthanoidy
Vzhled stříbřitě lesklý
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 138,905
Atomový poloměr empiricky: 187 pm
Kovalentní poloměr 207±8 pm
Elektronová konfigurace [Xe] 5d1 6s2
Oxidační čísla 0[1], +1, +2, +3
Elektronegativita (Paulingova stupnice) 1,1
Ionizační energie
První 538,1 kJ/mol
Druhá 1067 kJ/mol
Třetí 1850,3 kJ/mol
Látkové vlastnosti
Krystalická struktura dvojitě hexagonální těsně uspořádaná
Mechanické vlastnosti
Hustota 6,17 g/cm³
Skupenství Pevné
Tvrdost 2,5
Rychlost zvuku 2475 m/s
Termické vlastnosti
Tepelná vodivost 13,4 W/(m·K)
Součinitel délkové roztažnosti 12,1 µm/(m·K)
Termodynamické vlastnosti
Teplota tání 920 °C (1 193,15 K)
Teplota varu 3 470 °C (3 743,15 K)
Skupenské teplo tání 6,20 kJ/mol
Skupenské teplo varu 400 kJ/mol
Molární tepelná kapacita 27,11 J/(mol·K)
Elektromagnetické vlastnosti
Teplotní součinitel elektrického odporu 615 nΩ·m
Měrná magnetická susceptibilita +118,0·10−6 cm3/mol
Bezpečnost
GHS02 – hořlavé látky
GHS02
[2]
Nebezpečí[2]
Izotopy
I V (%) S T1/2 Z E (MeV) P
139La 99,911% 7/2+ je stabilní s 82 neutrony
137La umělý 7/2+ 6×104 let EC 137Ba
138La 0,089% 5+ 1,05×1011 let EC 138Ba

β− 138Ce
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Baryum La Cer

Ac

Lanthan (chemická značka La, latinsky Lanthanum) je stříbřitě lesklý, přechodný kovový prvek, 1. člen skupiny lanthanoidů a 3. člen skupiny kovů vzácných zemin. Hlavní uplatnění nalézá v metalurgickém průmyslu při výrobě speciálních slitin anebo jejich deoxidaci a jako složka některých speciálních skel.

Základní fyzikálně-chemické vlastnosti

[editovat | editovat zdroj]

Lanthan je stříbřitě bílý, měkký, velmi elektropozitivní přechodný kov. Je supravodičem 1. typu, a to za teplot pod 6,00 K.

Chemicky je lanthan značně reaktivním prvkem, ve skupině lanthanoidů patří mezi nejreaktivnější. Již za normální teploty reaguje se vzdušným kyslíkem za vzniku velmi stabilního oxidu lanthanitého. S vodou reaguje lanthan zvolna za vzniku plynného vodíku, snadno se rozpouští v běžných minerálních kyselinách. Za zvýšené teploty také přímo reaguje s běžnými nekovovými prvky jako jsou dusík, bor, fosfor, síra a halogeny.

Ve sloučeninách se vyskytuje pouze v mocenství La3+. Svými chemickými vlastnostmi se značně podobá hliníku. Oba prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Další nerozpustnou sloučeninou je šťavelan, který se dokonce používá ke gravimetrickému stanovení lanthanu.

Lanthan byl objeven v roce 1839 Carlem Mosanderem, v čisté podobě byl izolován až roku 1923.

Výskyt a výroba

[editovat | editovat zdroj]

Lanthan je v zemské kůře obsažen v koncentraci asi 18–30 mg/kg. V mořské vodě je jeho koncentrace kolem 1,2×10−8 g/l. Ve vesmíru připadá jeden atom lanthanu na 100 miliard atomů vodíku.

V přírodě se lanthan vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazitové písky a xenotim, chemicky fosforečnany lanthanoidů, a dále bastnäsity – směsné flourouhličitany prvků vzácných zemin.

Velká ložiska těchto rud se nalézají ve Skandinávii, Spojených státech amerických, Číně a Vietnamu. Významným zdrojem jsou i fosfátové suroviny – apatity z poloostrova KolaRusku

Schéma atomu

Při průmyslové výrobě prvků vzácných zemin se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy.

Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.

Příprava čistého kovu se obvykle provádí redukcí solí kovovým vápníkem. Redukci fluoridu lanthanitého popisuje rovnice:

2 LaF3 + 3 Ca → 2 La + 3 CaF2

Použití a sloučeniny

[editovat | editovat zdroj]

Vzhledem k vysokému zastoupení lanthanu v rudách vzácných zemin je tohoto prvku na trhu relativně nadbytek, protože vzniká částečně jako přebytek při výrobě vysoce žádaných lanthanoidů, především europia nebo samaria.

Základním průmyslové využití nalézá lanthan v metalurgii. Jeho vysoká afinita ke kyslíku se uplatní při odkysličování roztavených kovů a malé přídavky lanthanu do různých slitin mají vliv na výsledné mechanické vlastnosti produktu. Například oceli nebo litina s obsahem malých množství lanthanu vykazují vyšší tvárnost a kujnost a mají vyšší mechanickou odolnost proti nárazu. Ve slitinách molybdenu snižuje přídavek lanthanu tvrdost a zvyšuje odolnost proti náhlým teplotním změnám.

Významné uplatnění nalézají sloučeniny lanthanu, především oxid lanthanitý La2O3, ve sklářském průmyslu. Sklo s obsahem malých množství této sloučeniny získává vysoký index lomu a vykazuje nízký světelný rozptyl – používá se proto často pro výrobu optických čočekobjektivech fotoaparátů nebo dalekohledech. Sklo s obsahem lanthanu pohlcuje infračervené záření a vyrábí se z něj optické filtry, propouštějící pouze viditelné světlo.

Katalyzátory s obsahem lanthanu se používají i v petrochemii při krakování ropy.

Brusné a lešticí práškové materiály, používané při výrobě optických součástek (přesné čočky, zrcadla do dalekohledů…) obsahují často významný podíl sloučenin lanthanu.

Přídavek lanthanitých iontů do analyzovaných roztoků působí jako spektrální iontový pufr a především v atomové absorpční spektrometrii slouží k potlačení nežádoucích interferencí, vznikajících přítomností vysokých množství solí.

  1. CLOKE, F; GEOFFREY, N. Zero oxidation state compounds of scandium, yttrium, and the lanthanides. Chemical Society Reviews. 1993, roč. 22, čís. 1, s. 17. Dostupné online. ISSN 1460-4744. doi:10.1039/CS9932200017. 
  2. a b Lanthanum. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky) 

Literatura

[editovat | editovat zdroj]
  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy

[editovat | editovat zdroj]
  • Obrázky, zvuky či videa k tématu lanthan na Wikimedia Commons
  • Slovníkové heslo lanthan ve Wikislovníku