Groverio algoritmas  (angl.  Grover's algorithm ) – kvantinis algoritmas  skirtas ieškojimui nestrukturizuotoje (nesutvarkytoje) duomenų bazėje  su N kintamųjų per O(
  
    
      
        
          
            N 
           
         
       
     
    {\displaystyle {\sqrt {N}}} 
   
 
  
    
      
        O 
        ( 
        
          log 
          
            2 
           
         
         
        N 
        ) 
        = 
        O 
        ( 
        n 
        ) 
       
     
    {\displaystyle O(\log _{2}N)=O(n)} 
   
 Lov Grover ) 1996  m.
Klasiškai, ieškant nesutvarkytoje duomenų bazėje reikia linijinio ieškojimo per O(N/2) laiką. Groverio algoritmas kuris užima O(N1/2 )  laiko, yra greičiausias įmanomas algoritmas skirtas ieškojimui nesutvarkytoje duomenų bazėje. Jis suteikia tik kvadratinį pagreitėjimą, skirtingai nuo kitų kvantinių algoritmų, kurie gali suteikti eksponentinį paspartėjimą, nei jų klasikiniai atitikmenys. Tikimybė, kad atsakymas bus klaidingas yra 1/N, kur N  yra duomenų bazę sudarančių elementų sveikas skaičius. N =2n , kur n  kubitų skaičius.
  
    
      
        
          | 
         
        O 
        ⟩ 
        = 
        
          | 
         
        0 
        ⟩ 
        
          | 
         
        0 
        ⟩ 
        . 
        . 
        . 
        
          | 
         
        0 
        ⟩ 
        = 
        
          | 
         
        00...0 
        ⟩ 
        . 
       
     
    {\displaystyle |O\rangle =|0\rangle |0\rangle ...|0\rangle =|00...0\rangle .} 
   
 
  
    
      
        
          | 
         
        ψ 
        ⟩ 
        = 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        . 
        . 
        . 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        = 
        
          H 
          
            n 
           
         
        
          | 
         
        O 
        ⟩ 
        . 
       
     
    {\displaystyle |\psi \rangle =H|0\rangle H|0\rangle H|0\rangle H|0\rangle ...H|0\rangle H|0\rangle =H^{n}|O\rangle .} 
   
 Vartai M , kurie naudojami po Hadamardo vartų:
  
    
      
        M 
        = 
        1 
        − 
        2 
        
          | 
         
        t 
        ⟩ 
        ⟨ 
        t 
        
          | 
         
        ; 
       
     
    {\displaystyle M=1-2|t\rangle \langle t|;} 
   
 
  
    
      
        M 
        
          | 
         
        ψ 
        ⟩ 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        t 
        ⟩ 
        ⟨ 
        t 
        
          | 
         
        ) 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                2 
                
                  n 
                 
               
             
           
         
        
          | 
         
        t 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        , 
       
     
    {\displaystyle M|\psi \rangle =(1-2|t\rangle \langle t|)|\psi \rangle =|\psi \rangle -{\frac {2}{\sqrt {2^{n}}}}|t\rangle =|\psi \rangle -{\frac {2}{\sqrt {N}}}|t\rangle ,} 
   
 
  
    
      
        ⟨ 
        t 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          
            1 
            
              
                2 
                
                  n 
                 
               
             
           
         
       
     
    {\displaystyle \langle t|\psi \rangle ={\frac {1}{\sqrt {2^{n}}}}} 
   
 kur t  yra ieškomas elementas, o n  yra kubitų skaičius.
Per vartus B  pereina visi kubitai išskyrus paskutinį. 
  
    
      
        B 
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
       
     
    {\displaystyle B=2|\psi \rangle \langle \psi |-1} 
   
 
  
    
      
        B 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        ) 
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            4 
            
              N 
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        t 
        ⟩ 
        + 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        = 
       
     
    {\displaystyle B(|\psi \rangle -{\frac {2}{\sqrt {N}}}|t\rangle )=(2|\psi \rangle \langle \psi |-1)(|\psi \rangle -{\frac {2}{\sqrt {N}}}|t\rangle )=2|\psi \rangle \langle \psi |\psi \rangle -|\psi \rangle -{\frac {4}{\sqrt {N}}}|\psi \rangle \langle \psi |t\rangle +{\frac {2}{\sqrt {N}}}|t\rangle =} 
   
 
  
    
      
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            4 
            
              N 
             
           
         
        ⋅ 
        
          
            1 
            
              N 
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            4 
            N 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
        = 
        
          
            
              N 
              − 
              4 
             
            N 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            2 
            
              N 
             
           
         
        
          | 
         
        t 
        ⟩ 
       
     
    {\displaystyle =2|\psi \rangle -|\psi \rangle -{\frac {4}{\sqrt {N}}}\cdot {\frac {1}{\sqrt {N}}}|\psi \rangle +{\frac {2}{\sqrt {N}}}|t\rangle =|\psi \rangle -{\frac {4}{N}}|\psi \rangle +{\frac {2}{\sqrt {N}}}|t\rangle ={\frac {N-4}{N}}|\psi \rangle +{\frac {2}{\sqrt {N}}}|t\rangle } 
   
 kur 
  
    
      
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        = 
        1 
        , 
       
     
    {\displaystyle \langle \psi |\psi \rangle =1,} 
   
 
  
    
      
        ⟨ 
        ψ 
        
          | 
         
        t 
        ⟩ 
        = 
        
          
            1 
            
              
                2 
                
                  n 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \langle \psi |t\rangle ={\frac {1}{\sqrt {2^{n}}}}.} 
   
 Pavyzdžiui, t=|1001>:
  
    
      
        ⟨ 
        1001 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          
            1 
            
              
                2 
                
                  4 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \langle 1001|\psi \rangle ={\frac {1}{\sqrt {2^{4}}}}.} 
   
 
  
    
      
        ⟨ 
        t 
        
          | 
         
        t 
        ⟩ 
        = 
        ⟨ 
        1001 
        
          | 
         
        1001 
        ⟩ 
        = 
        1. 
       
     
    {\displaystyle \langle t|t\rangle =\langle 1001|1001\rangle =1.} 
   
 
  
    
      
        ⟨ 
        t 
        
          | 
         
        x 
        ⟩ 
        = 
        ⟨ 
        1001 
        
          | 
         
        1000 
        ⟩ 
        = 
        0. 
       
     
    {\displaystyle \langle t|x\rangle =\langle 1001|1000\rangle =0.} 
   
 
  
    
      
        B 
        = 
        H 
        ( 
        2 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        1 
        ) 
        H 
        = 
        ( 
        2 
        H 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        H 
        ) 
        H 
        = 
        2 
        H 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        H 
        − 
        H 
        H 
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1. 
       
     
    {\displaystyle B=H(2|O\rangle \langle O|-1)H=(2H|O\rangle \langle O|-H)H=2H|O\rangle \langle O|H-HH=2|\psi \rangle \langle \psi |-1.} 
   
 Groverio iteracija G :
  
    
      
        G 
        = 
        B 
        M 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        1 
        − 
        2 
        
          | 
         
        t 
        ⟩ 
        ⟨ 
        t 
        
          | 
         
        ) 
        . 
       
     
    {\displaystyle G=BM=(2|\psi \rangle \langle \psi |-1)(1-2|t\rangle \langle t|).} 
   
 Operatorius M  ir B  reikia kartoti tiek kartų kiek reikia Groverio iteracijų, kol bus gautas teisingas atsakymas. 
HH=1; MM=1; BB=1; 
  
    
      
        ( 
        2 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        1 
        ) 
        ( 
        2 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        1 
        ) 
        = 
        4 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        2 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        2 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        + 
        1 
        = 
        4 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        − 
        4 
        
          | 
         
        O 
        ⟩ 
        ⟨ 
        O 
        
          | 
         
        + 
        1 
        = 
        1. 
       
     
    {\displaystyle (2|O\rangle \langle O|-1)(2|O\rangle \langle O|-1)=4|O\rangle \langle O|O\rangle \langle O|-2|O\rangle \langle O|-2|O\rangle \langle O|+1=4|O\rangle \langle O|-4|O\rangle \langle O|+1=1.} 
   
 Tarkime turime ant įėjimo 5 kubitus. Pirmi 4 kubitai yra 0 būsenoje, o penktas kubitas yra 1 busenoje. Pirmi keturi kubitai yra skaičius n , kuris praėjes pro H tampa 2n . Visus 5 kubitus praleidžiame pro Hadamardo vartus .
t=1, 
  
    
      
        
          | 
         
        ψ 
        ⟩ 
        H 
        
          | 
         
        1 
        ⟩ 
        = 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        1 
        ⟩ 
        = 
        
          
            1 
            4 
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle |\psi \rangle H|1\rangle =H|0\rangle H|0\rangle H|0\rangle H|0\rangle H|1\rangle ={\frac {1}{4}}(|0\rangle +|1\rangle )(|0\rangle +|1\rangle )(|0\rangle +|1\rangle )(|0\rangle +|1\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=} 
   
  
  
    
      
        = 
        
          
            1 
            4 
           
         
        ( 
        
          | 
         
        0000 
        ⟩ 
        + 
        
          | 
         
        0010 
        ⟩ 
        + 
        
          | 
         
        0001 
        ⟩ 
        + 
        
          | 
         
        0011 
        ⟩ 
        + 
        
          | 
         
        1000 
        ⟩ 
        + 
        
          | 
         
        1010 
        ⟩ 
        + 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle ={\frac {1}{4}}(|0000\rangle +|0010\rangle +|0001\rangle +|0011\rangle +|1000\rangle +|1010\rangle +|1001\rangle +|1011\rangle +} 
   
 
  
    
      
        + 
        
          | 
         
        0100 
        ⟩ 
        + 
        
          | 
         
        0110 
        ⟩ 
        + 
        
          | 
         
        0101 
        ⟩ 
        + 
        
          | 
         
        0111 
        ⟩ 
        + 
        
          | 
         
        1100 
        ⟩ 
        + 
        
          | 
         
        1110 
        ⟩ 
        + 
        
          | 
         
        1101 
        ⟩ 
        + 
        
          | 
         
        1111 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle +|0100\rangle +|0110\rangle +|0101\rangle +|0111\rangle +|1100\rangle +|1110\rangle +|1101\rangle +|1111\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=|\psi \rangle {\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle ).} 
   
 M :
  
    
      
        M 
        = 
        1 
        − 
        2 
        
          | 
         
        t 
        ⟩ 
        ⟨ 
        t 
        
          | 
         
        = 
        1 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        . 
       
     
    {\displaystyle M=1-2|t\rangle \langle t|=1-2|1001\rangle \langle 1001|.} 
   
 
  
    
      
        M 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                2 
                
                  n 
                 
               
             
           
         
        
          | 
         
        t 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                2 
                
                  4 
                 
               
             
           
         
        
          | 
         
        1001 
        ⟩ 
        , 
       
     
    {\displaystyle M|\psi \rangle =|\psi \rangle -{\frac {2}{\sqrt {2^{n}}}}|t\rangle =|\psi \rangle -{\frac {2}{\sqrt {2^{4}}}}|1001\rangle ,} 
   
 kur t  yra ieškoma būsena.
Tarkime, mes ieškome |1001> busenos. Tada perėjus per orakulą M  |1001> busena bus pažymėta ženklu minus, jos amplitudė pasidarys neigiama:
t=2, 
  
    
      
        M 
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ) 
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ψ 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle M|\psi \rangle {\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=(1-2|1001\rangle \langle 1001|)|\psi \rangle {\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=(|\psi \rangle -2|1001\rangle \langle 1001|\psi \rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=} 
   
 
  
    
      
        = 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                2 
                
                  4 
                 
               
             
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle =(|\psi \rangle -{\frac {2}{\sqrt {2^{4}}}}|1001\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=(|\psi \rangle -{\frac {1}{2}}|1001\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=} 
   
 
  
    
      
        = 
        ( 
        
          
            1 
            4 
           
         
        ( 
        
          | 
         
        0000 
        ⟩ 
        + 
        
          | 
         
        0010 
        ⟩ 
        + 
        
          | 
         
        0001 
        ⟩ 
        + 
        
          | 
         
        0011 
        ⟩ 
        + 
        
          | 
         
        1000 
        ⟩ 
        + 
        
          | 
         
        1010 
        ⟩ 
        + 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle =({\frac {1}{4}}(|0000\rangle +|0010\rangle +|0001\rangle +|0011\rangle +|1000\rangle +|1010\rangle +|1001\rangle +|1011\rangle +} 
   
 
  
    
      
        + 
        
          | 
         
        0100 
        ⟩ 
        + 
        
          | 
         
        0110 
        ⟩ 
        + 
        
          | 
         
        0101 
        ⟩ 
        + 
        
          | 
         
        0111 
        ⟩ 
        + 
        
          | 
         
        1100 
        ⟩ 
        + 
        
          | 
         
        1110 
        ⟩ 
        + 
        
          | 
         
        1101 
        ⟩ 
        + 
        
          | 
         
        1111 
        ⟩ 
        ) 
        ) 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle +|0100\rangle +|0110\rangle +|0101\rangle +|0111\rangle +|1100\rangle +|1110\rangle +|1101\rangle +|1111\rangle ))-{\frac {1}{2}}|1001\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=} 
   
 
  
    
      
        = 
        
          
            1 
            4 
           
         
        ( 
        
          | 
         
        0000 
        ⟩ 
        + 
        
          | 
         
        0010 
        ⟩ 
        + 
        
          | 
         
        0001 
        ⟩ 
        + 
        
          | 
         
        0011 
        ⟩ 
        + 
        
          | 
         
        1000 
        ⟩ 
        + 
        
          | 
         
        1010 
        ⟩ 
        − 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle ={\frac {1}{4}}(|0000\rangle +|0010\rangle +|0001\rangle +|0011\rangle +|1000\rangle +|1010\rangle -|1001\rangle +|1011\rangle +} 
   
 
  
    
      
        + 
        
          | 
         
        0100 
        ⟩ 
        + 
        
          | 
         
        0110 
        ⟩ 
        + 
        
          | 
         
        0101 
        ⟩ 
        + 
        
          | 
         
        0111 
        ⟩ 
        + 
        
          | 
         
        1100 
        ⟩ 
        + 
        
          | 
         
        1110 
        ⟩ 
        + 
        
          | 
         
        1101 
        ⟩ 
        + 
        
          | 
         
        1111 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle +|0100\rangle +|0110\rangle +|0101\rangle +|0111\rangle +|1100\rangle +|1110\rangle +|1101\rangle +|1111\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle ).} 
   
 Toliau Praleidžiame tik pirmus 4 kubitus pro B vartus:
t=3, 
  
    
      
        B 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle B(|\psi \rangle -{\frac {1}{2}}|1001\rangle )=(2|\psi \rangle \langle \psi |-1)(|\psi \rangle -{\frac {1}{2}}|1001\rangle )=2|\psi \rangle \langle \psi |\psi \rangle -|\psi \rangle -{\frac {2}{2}}|\psi \rangle \langle \psi |1001\rangle +{\frac {1}{2}}|1001\rangle =} 
   
  
  
    
      
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              
                2 
                
                  4 
                 
               
             
           
         
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle =2|\psi \rangle -|\psi \rangle -|\psi \rangle {\frac {1}{\sqrt {2^{4}}}}+{\frac {1}{2}}|1001\rangle =|\psi \rangle -{\frac {1}{4}}|\psi \rangle +{\frac {1}{2}}|1001\rangle ={\frac {3}{4}}|\psi \rangle +{\frac {1}{2}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            16 
           
         
        ( 
        3 
        
          | 
         
        0000 
        ⟩ 
        + 
        3 
        
          | 
         
        0010 
        ⟩ 
        + 
        3 
        
          | 
         
        0001 
        ⟩ 
        + 
        3 
        
          | 
         
        0011 
        ⟩ 
        + 
        3 
        
          | 
         
        1000 
        ⟩ 
        + 
        3 
        
          | 
         
        1010 
        ⟩ 
        + 
        3 
        
          | 
         
        1001 
        ⟩ 
        + 
        3 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle ={\frac {1}{16}}(3|0000\rangle +3|0010\rangle +3|0001\rangle +3|0011\rangle +3|1000\rangle +3|1010\rangle +3|1001\rangle +3|1011\rangle +} 
   
 
  
    
      
        + 
        3 
        
          | 
         
        0100 
        ⟩ 
        + 
        3 
        
          | 
         
        0110 
        ⟩ 
        + 
        3 
        
          | 
         
        0101 
        ⟩ 
        + 
        3 
        
          | 
         
        0111 
        ⟩ 
        + 
        3 
        
          | 
         
        1100 
        ⟩ 
        + 
        3 
        
          | 
         
        1110 
        ⟩ 
        + 
        3 
        
          | 
         
        1101 
        ⟩ 
        + 
        3 
        
          | 
         
        1111 
        ⟩ 
        ) 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle +3|0100\rangle +3|0110\rangle +3|0101\rangle +3|0111\rangle +3|1100\rangle +3|1110\rangle +3|1101\rangle +3|1111\rangle )+{\frac {1}{2}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            16 
           
         
        ( 
        3 
        
          | 
         
        0000 
        ⟩ 
        + 
        3 
        
          | 
         
        0010 
        ⟩ 
        + 
        3 
        
          | 
         
        0001 
        ⟩ 
        + 
        3 
        
          | 
         
        0011 
        ⟩ 
        + 
        3 
        
          | 
         
        1000 
        ⟩ 
        + 
        3 
        
          | 
         
        1010 
        ⟩ 
        + 
        11 
        
          | 
         
        1001 
        ⟩ 
        + 
        3 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle ={\frac {1}{16}}(3|0000\rangle +3|0010\rangle +3|0001\rangle +3|0011\rangle +3|1000\rangle +3|1010\rangle +11|1001\rangle +3|1011\rangle +} 
   
 
  
    
      
        + 
        3 
        
          | 
         
        0100 
        ⟩ 
        + 
        3 
        
          | 
         
        0110 
        ⟩ 
        + 
        3 
        
          | 
         
        0101 
        ⟩ 
        + 
        3 
        
          | 
         
        0111 
        ⟩ 
        + 
        3 
        
          | 
         
        1100 
        ⟩ 
        + 
        3 
        
          | 
         
        1110 
        ⟩ 
        + 
        3 
        
          | 
         
        1101 
        ⟩ 
        + 
        3 
        
          | 
         
        1111 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle +3|0100\rangle +3|0110\rangle +3|0101\rangle +3|0111\rangle +3|1100\rangle +3|1110\rangle +3|1101\rangle +3|1111\rangle ).} 
   
 Kaip matome po perėjimo per B  vartus, ieškomo elemento amplitudė pakilo ir sudaro 
  
    
      
        
          
            11 
            16 
           
         
       
     
    {\displaystyle {\frac {11}{16}}} 
   
 
  
    
      
        
          
            3 
            16 
           
         
       
     
    {\displaystyle {\frac {3}{16}}} 
   
 
  
    
      
        15 
        ( 
        
          
            3 
            16 
           
         
        
          ) 
          
            2 
           
         
        + 
        ( 
        
          
            11 
            16 
           
         
        
          ) 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle 15({\frac {3}{16}})^{2}+({\frac {11}{16}})^{2}=1.} 
   
 Tai reiškia, kad tikimybė išmatuoti |1001> yra (11/16)²=0.47265625 arba ~47 %.
Toliau vėl praleidžiame visus 5 kubitus pro orakulą M  (penktas kubitas neparodytas, nes skaičiavimuose jis nieko nekeičia):
t=4, 
  
    
      
        M 
        ( 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ) 
        ( 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle M({\frac {3}{4}}|\psi \rangle +{\frac {1}{2}}|1001\rangle )=(1-2|1001\rangle \langle 1001|)({\frac {3}{4}}|\psi \rangle +{\frac {1}{2}}|1001\rangle )=} 
   
  
  
    
      
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            6 
            4 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            2 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {3}{4}}|\psi \rangle -{\frac {6}{4}}|1001\rangle \langle 1001|\psi \rangle +{\frac {1}{2}}|1001\rangle -{\frac {2}{2}}|1001\rangle \langle 1001|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        
          
            1 
            
              
                2 
                
                  4 
                 
               
             
           
         
        + 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        
          
            1 
            4 
           
         
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {3}{4}}|\psi \rangle -{\frac {3}{2}}|1001\rangle {\frac {1}{\sqrt {2^{4}}}}+{\frac {1}{2}}|1001\rangle -|1001\rangle ={\frac {3}{4}}|\psi \rangle -{\frac {3}{2}}|1001\rangle {\frac {1}{4}}-{\frac {1}{2}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {3}{4}}|\psi \rangle -{\frac {3}{8}}|1001\rangle -{\frac {1}{2}}|1001\rangle ={\frac {3}{4}}|\psi \rangle -{\frac {7}{8}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            16 
           
         
        ( 
        3 
        
          | 
         
        0000 
        ⟩ 
        + 
        3 
        
          | 
         
        0010 
        ⟩ 
        + 
        3 
        
          | 
         
        0001 
        ⟩ 
        + 
        3 
        
          | 
         
        0011 
        ⟩ 
        + 
        3 
        
          | 
         
        1000 
        ⟩ 
        + 
        3 
        
          | 
         
        1010 
        ⟩ 
        − 
        11 
        
          | 
         
        1001 
        ⟩ 
        + 
        3 
        
          | 
         
        1011 
        ⟩ 
        + 
       
     
    {\displaystyle ={\frac {1}{16}}(3|0000\rangle +3|0010\rangle +3|0001\rangle +3|0011\rangle +3|1000\rangle +3|1010\rangle -11|1001\rangle +3|1011\rangle +} 
   
 
  
    
      
        + 
        3 
        
          | 
         
        0100 
        ⟩ 
        + 
        3 
        
          | 
         
        0110 
        ⟩ 
        + 
        3 
        
          | 
         
        0101 
        ⟩ 
        + 
        3 
        
          | 
         
        0111 
        ⟩ 
        + 
        3 
        
          | 
         
        1100 
        ⟩ 
        + 
        3 
        
          | 
         
        1110 
        ⟩ 
        + 
        3 
        
          | 
         
        1101 
        ⟩ 
        + 
        3 
        
          | 
         
        1111 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle +3|0100\rangle +3|0110\rangle +3|0101\rangle +3|0111\rangle +3|1100\rangle +3|1110\rangle +3|1101\rangle +3|1111\rangle ).} 
   
 
  
    
      
        15 
        ( 
        
          
            3 
            4 
           
         
        
          
            1 
            4 
           
         
        
          ) 
          
            2 
           
         
        + 
        ( 
        
          
            3 
            16 
           
         
        − 
        
          
            7 
            8 
           
         
        
          ) 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle 15({\frac {3}{4}}{\frac {1}{4}})^{2}+({\frac {3}{16}}-{\frac {7}{8}})^{2}=1.} 
   
 Toliau pirmus 4 kubitus praleidžiame pro B  vartus:
t=5, 
  
    
      
        B 
        ( 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        
          
            3 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle B({\frac {3}{4}}|\psi \rangle -{\frac {7}{8}}|1001\rangle )=(2|\psi \rangle \langle \psi |-1)({\frac {3}{4}}|\psi \rangle -{\frac {7}{8}}|1001\rangle )={\frac {3}{2}}|\psi \rangle \langle \psi |\psi \rangle -{\frac {3}{4}}|\psi \rangle -{\frac {7}{4}}|\psi \rangle \langle \psi |1001\rangle +{\frac {7}{8}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            3 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              
                2 
                
                  4 
                 
               
             
           
         
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            4 
           
         
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            3 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            7 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {3}{2}}|\psi \rangle -{\frac {3}{4}}|\psi \rangle -{\frac {7}{4}}|\psi \rangle {\frac {1}{\sqrt {2^{4}}}}+{\frac {7}{8}}|1001\rangle ={\frac {3}{4}}|\psi \rangle -{\frac {7}{4}}|\psi \rangle {\frac {1}{4}}+{\frac {7}{8}}|1001\rangle ={\frac {3}{4}}|\psi \rangle -{\frac {7}{16}}|\psi \rangle +{\frac {7}{8}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
       
     
    {\displaystyle ={\frac {5}{16}}|\psi \rangle +{\frac {7}{8}}|1001\rangle } 
   
 Tikimybė dabar išmatuoti |1001> yra 
  
    
      
        ( 
        
          
            5 
            16 
           
         
        ⋅ 
        
          
            1 
            4 
           
         
        + 
        
          
            7 
            8 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            5 
            64 
           
         
        + 
        
          
            7 
            8 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            
              5 
              + 
              7 
              ⋅ 
              8 
             
            64 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            61 
            64 
           
         
        
          ) 
          
            2 
           
         
        ≈ 
        0.91 
       
     
    {\displaystyle ({\frac {5}{16}}\cdot {\frac {1}{4}}+{\frac {7}{8}})^{2}=({\frac {5}{64}}+{\frac {7}{8}})^{2}=({\frac {5+7\cdot 8}{64}})^{2}=({\frac {61}{64}})^{2}\approx 0.91} 
   
 
  
    
      
        15 
        ( 
        
          
            5 
            16 
           
         
        ⋅ 
        
          
            1 
            4 
           
         
        
          ) 
          
            2 
           
         
        + 
        ( 
        
          
            61 
            64 
           
         
        
          ) 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle 15({\frac {5}{16}}\cdot {\frac {1}{4}})^{2}+({\frac {61}{64}})^{2}=1.} 
   
 Kadangi n=4, o N=2n =24 =16, tai pagal idėja reikia padaryti 
  
    
      
        
          
            16 
           
         
        = 
        4 
       
     
    {\displaystyle {\sqrt {16}}=4} 
   
 M  vartus:
t=6, 
  
    
      
        M 
        ( 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ) 
        ( 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle M({\frac {5}{16}}|\psi \rangle +{\frac {7}{8}}|1001\rangle )=(1-2|1001\rangle \langle 1001|)({\frac {5}{16}}|\psi \rangle +{\frac {7}{8}}|1001\rangle )=} 
   
  
  
    
      
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            5 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            7 
            4 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {5}{16}}|\psi \rangle -{\frac {5}{8}}|1001\rangle \langle 1001|\psi \rangle +{\frac {7}{8}}|1001\rangle -{\frac {7}{4}}|1001\rangle \langle 1001|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            5 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        
          
            1 
            4 
           
         
        + 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            7 
            4 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            5 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            7 
            8 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {5}{16}}|\psi \rangle -{\frac {5}{8}}|1001\rangle {\frac {1}{4}}+{\frac {7}{8}}|1001\rangle -{\frac {7}{4}}|1001\rangle ={\frac {5}{16}}|\psi \rangle -{\frac {5}{32}}|1001\rangle -{\frac {7}{8}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            
              − 
              5 
              − 
              7 
              ⋅ 
              4 
             
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        . 
       
     
    {\displaystyle ={\frac {5}{16}}|\psi \rangle +{\frac {-5-7\cdot 4}{32}}|1001\rangle ={\frac {5}{16}}|\psi \rangle -{\frac {33}{32}}|1001\rangle .} 
   
 Toliau praleidžiame pirmus keturis kubitus pro B  vartus:
t=7, 
  
    
      
        B 
        ( 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle B({\frac {5}{16}}|\psi \rangle -{\frac {33}{32}}|1001\rangle )=(2|\psi \rangle \langle \psi |-1)({\frac {5}{16}}|\psi \rangle -{\frac {33}{32}}|1001\rangle )=} 
   
  
  
    
      
        = 
        
          
            5 
            8 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            5 
            8 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            4 
           
         
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {5}{8}}|\psi \rangle \langle \psi |\psi \rangle -{\frac {5}{16}}|\psi \rangle -{\frac {33}{16}}|\psi \rangle \langle \psi |1001\rangle +{\frac {33}{32}}|1001\rangle ={\frac {5}{8}}|\psi \rangle -{\frac {5}{16}}|\psi \rangle -{\frac {33}{16}}|\psi \rangle {\frac {1}{4}}+{\frac {33}{32}}|1001\rangle =} 
   
 
  
    
      
        = 
        
          
            5 
            16 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            33 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            
              5 
              ⋅ 
              4 
              − 
              33 
             
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        . 
       
     
    {\displaystyle ={\frac {5}{16}}|\psi \rangle -{\frac {33}{64}}|\psi \rangle +{\frac {33}{32}}|1001\rangle ={\frac {5\cdot 4-33}{64}}|\psi \rangle +{\frac {33}{32}}|1001\rangle =-{\frac {13}{64}}|\psi \rangle +{\frac {33}{32}}|1001\rangle .} 
   
 Tikimybė išmatuoti |1001> yra 
  
    
      
        ( 
        − 
        
          
            13 
            64 
           
         
        ⋅ 
        
          
            1 
            4 
           
         
        + 
        
          
            33 
            32 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        − 
        
          
            13 
            256 
           
         
        + 
        
          
            33 
            32 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            
              − 
              13 
              + 
              33 
              ⋅ 
              8 
             
            256 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            251 
            256 
           
         
        
          ) 
          
            2 
           
         
        = 
        
          
            63001 
            65536 
           
         
        ≈ 
        0.961 
       
     
    {\displaystyle (-{\frac {13}{64}}\cdot {\frac {1}{4}}+{\frac {33}{32}})^{2}=(-{\frac {13}{256}}+{\frac {33}{32}})^{2}=({\frac {-13+33\cdot 8}{256}})^{2}=({\frac {251}{256}})^{2}={\frac {63001}{65536}}\approx 0.961} 
   
 
Toliau praleidžiame visus kubitus pro M  vartus:
t=8, 
  
    
      
        M 
        ( 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ) 
        ( 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle M(-{\frac {13}{64}}|\psi \rangle +{\frac {33}{32}}|1001\rangle )=(1-2|1001\rangle \langle 1001|)(-{\frac {13}{64}}|\psi \rangle +{\frac {33}{32}}|1001\rangle )=} 
   
  
  
    
      
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            13 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            33 
            16 
           
         
        
          | 
         
        1001 
        ⟩ 
        ⟨ 
        1001 
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle =-{\frac {13}{64}}|\psi \rangle +{\frac {13}{32}}|1001\rangle \langle 1001|\psi \rangle +{\frac {33}{32}}|1001\rangle -{\frac {33}{16}}|1001\rangle \langle 1001|1001\rangle =} 
   
 
  
    
      
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            13 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        
          
            1 
            4 
           
         
        + 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            33 
            16 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            13 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        − 
        
          
            33 
            32 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle =-{\frac {13}{64}}|\psi \rangle +{\frac {13}{32}}|1001\rangle {\frac {1}{4}}+{\frac {33}{32}}|1001\rangle -{\frac {33}{16}}|1001\rangle =-{\frac {13}{64}}|\psi \rangle +{\frac {13}{128}}|1001\rangle -{\frac {33}{32}}|1001\rangle =} 
   
 
  
    
      
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            
              13 
              − 
              33 
              ⋅ 
              4 
             
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        . 
       
     
    {\displaystyle =-{\frac {13}{64}}|\psi \rangle +{\frac {13-33\cdot 4}{128}}|1001\rangle =-{\frac {13}{64}}|\psi \rangle -{\frac {119}{128}}|1001\rangle .} 
   
 Toliau praleidžiame pirmus keturis kubitus pro B  vartus:
t=9, 
  
    
      
        B 
        ( 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle B(-{\frac {13}{64}}|\psi \rangle -{\frac {119}{128}}|1001\rangle )=(2|\psi \rangle \langle \psi |-1)(-{\frac {13}{64}}|\psi \rangle -{\frac {119}{128}}|1001\rangle )=} 
   
  
  
    
      
        = 
        − 
        
          
            13 
            32 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        1001 
        ⟩ 
        + 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        − 
        
          
            13 
            32 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            4 
           
         
        + 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
       
     
    {\displaystyle =-{\frac {13}{32}}|\psi \rangle \langle \psi |\psi \rangle +{\frac {13}{64}}|\psi \rangle -{\frac {119}{64}}|\psi \rangle \langle \psi |1001\rangle +{\frac {119}{128}}|1001\rangle =-{\frac {13}{32}}|\psi \rangle +{\frac {13}{64}}|\psi \rangle -{\frac {119}{64}}|\psi \rangle {\frac {1}{4}}+{\frac {119}{128}}|1001\rangle =} 
   
 
  
    
      
        = 
        − 
        
          
            13 
            64 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            119 
            256 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        
          
            
              − 
              13 
              ⋅ 
              4 
              − 
              119 
             
            256 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        = 
        − 
        
          
            171 
            256 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            119 
            128 
           
         
        
          | 
         
        1001 
        ⟩ 
        . 
       
     
    {\displaystyle =-{\frac {13}{64}}|\psi \rangle -{\frac {119}{256}}|\psi \rangle +{\frac {119}{128}}|1001\rangle ={\frac {-13\cdot 4-119}{256}}|\psi \rangle +{\frac {119}{128}}|1001\rangle =-{\frac {171}{256}}|\psi \rangle +{\frac {119}{128}}|1001\rangle .} 
   
 Tikimybė išmatuoti |1001> yra 
  
    
      
        ( 
        − 
        
          
            171 
            256 
           
         
        ⋅ 
        
          
            1 
            4 
           
         
        + 
        
          
            119 
            128 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        − 
        
          
            171 
            1024 
           
         
        + 
        
          
            119 
            128 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            
              − 
              171 
              + 
              119 
              ⋅ 
              8 
             
            1024 
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            781 
            1024 
           
         
        
          ) 
          
            2 
           
         
        = 
        
          
            609961 
            1048576 
           
         
        ≈ 
        0.582 
       
     
    {\displaystyle (-{\frac {171}{256}}\cdot {\frac {1}{4}}+{\frac {119}{128}})^{2}=(-{\frac {171}{1024}}+{\frac {119}{128}})^{2}=({\frac {-171+119\cdot 8}{1024}})^{2}=({\frac {781}{1024}})^{2}={\frac {609961}{1048576}}\approx 0.582} 
   
 visos  elementų amplitudės pasidaro neigiamos (-).
Na ir bendra amplitude kaip visada lygi 1:
  
    
      
        15 
        ( 
        
          
            
              − 
              171 
             
            1024 
           
         
        
          ) 
          
            2 
           
         
        + 
        ( 
        
          
            781 
            1024 
           
         
        
          ) 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle 15({\frac {-171}{1024}})^{2}+({\frac {781}{1024}})^{2}=1.} 
   
 
Turime 4 kubitus, tris pirmi kubitai yra nuliai, o ketvirtas vienetas. Praleidžiame juos visus pro Hadamardo vartus :
t=1, 
  
    
      
        
          | 
         
        ψ 
        ⟩ 
        H 
        
          | 
         
        1 
        ⟩ 
        = 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        0 
        ⟩ 
        H 
        
          | 
         
        1 
        ⟩ 
        = 
        
          
            1 
            
              
                2 
                
                  3 
                 
               
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle |\psi \rangle H|1\rangle =H|0\rangle H|0\rangle H|0\rangle H|1\rangle ={\frac {1}{\sqrt {2^{3}}}}(|0\rangle +|1\rangle )(|0\rangle +|1\rangle )(|0\rangle +|1\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle )=} 
   
  
  
    
      
        = 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          | 
         
        000 
        ⟩ 
        + 
        
          | 
         
        001 
        ⟩ 
        + 
        
          | 
         
        011 
        ⟩ 
        + 
        
          | 
         
        111 
        ⟩ 
        + 
        
          | 
         
        100 
        ⟩ 
        + 
        
          | 
         
        110 
        ⟩ 
        + 
        
          | 
         
        101 
        ⟩ 
        + 
        
          | 
         
        010 
        ⟩ 
        ) 
        
          
            1 
            
              2 
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle ={\frac {1}{2{\sqrt {2}}}}(|000\rangle +|001\rangle +|011\rangle +|111\rangle +|100\rangle +|110\rangle +|101\rangle +|010\rangle ){\frac {1}{\sqrt {2}}}(|0\rangle -|1\rangle ).} 
   
 Toliau visus 4 kubitus praleidžiame pro M  vartus. Ketvirto kubito nerašome nes jis lieka nepakitęs. Tarkime mes ieškome |110>.
t=2, 
  
    
      
        M 
        
          | 
         
        ψ 
        ⟩ 
        = 
        M 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          | 
         
        000 
        ⟩ 
        + 
        
          | 
         
        001 
        ⟩ 
        + 
        
          | 
         
        011 
        ⟩ 
        + 
        
          | 
         
        111 
        ⟩ 
        + 
        
          | 
         
        100 
        ⟩ 
        + 
        
          | 
         
        110 
        ⟩ 
        + 
        
          | 
         
        101 
        ⟩ 
        + 
        
          | 
         
        010 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        110 
        ⟩ 
        ⟨ 
        110 
        
          | 
         
        ) 
        
          | 
         
        ψ 
        ⟩ 
        = 
       
     
    {\displaystyle M|\psi \rangle =M{\frac {1}{2{\sqrt {2}}}}(|000\rangle +|001\rangle +|011\rangle +|111\rangle +|100\rangle +|110\rangle +|101\rangle +|010\rangle )=(1-2|110\rangle \langle 110|)|\psi \rangle =} 
   
 
  
    
      
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        2 
        
          | 
         
        110 
        ⟩ 
        ⟨ 
        110 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        2 
        
          | 
         
        110 
        ⟩ 
        
          
            1 
            
              
                2 
                
                  3 
                 
               
             
           
         
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        2 
        
          | 
         
        110 
        ⟩ 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle =|\psi \rangle -2|110\rangle \langle 110|\psi \rangle =|\psi \rangle -2|110\rangle {\frac {1}{\sqrt {2^{3}}}}=|\psi \rangle -2|110\rangle {\frac {1}{2{\sqrt {2}}}}=|\psi \rangle -{\frac {1}{\sqrt {2}}}|110\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          | 
         
        000 
        ⟩ 
        + 
        
          | 
         
        001 
        ⟩ 
        + 
        
          | 
         
        011 
        ⟩ 
        + 
        
          | 
         
        111 
        ⟩ 
        + 
        
          | 
         
        100 
        ⟩ 
        − 
        
          | 
         
        110 
        ⟩ 
        + 
        
          | 
         
        101 
        ⟩ 
        + 
        
          | 
         
        010 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle ={\frac {1}{2{\sqrt {2}}}}(|000\rangle +|001\rangle +|011\rangle +|111\rangle +|100\rangle -|110\rangle +|101\rangle +|010\rangle ).} 
   
 Toliau praleidžiame tik pirmus 3 kubitus pro B  vartus:
t=3, 
  
    
      
        B 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle B(|\psi \rangle -{\frac {1}{\sqrt {2}}}|110\rangle )=(2|\psi \rangle \langle \psi |-1)(|\psi \rangle -{\frac {1}{\sqrt {2}}}|110\rangle )=} 
   
  
  
    
      
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              2 
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        110 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle =2|\psi \rangle \langle \psi |\psi \rangle -|\psi \rangle -{\frac {2}{\sqrt {2}}}|\psi \rangle \langle \psi |110\rangle +{\frac {1}{\sqrt {2}}}|110\rangle =} 
   
 
  
    
      
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              2 
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle =2|\psi \rangle -|\psi \rangle -{\frac {2}{\sqrt {2}}}|\psi \rangle {\frac {1}{2{\sqrt {2}}}}+{\frac {1}{\sqrt {2}}}|110\rangle =} 
   
 
  
    
      
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle =|\psi \rangle -{\frac {2}{4}}|\psi \rangle +{\frac {1}{\sqrt {2}}}|110\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        . 
       
     
    {\displaystyle ={\frac {1}{2}}|\psi \rangle +{\frac {1}{\sqrt {2}}}|110\rangle .} 
   
 
  
    
      
        = 
        
          
            1 
            2 
           
         
        ⋅ 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          | 
         
        000 
        ⟩ 
        + 
        
          | 
         
        001 
        ⟩ 
        + 
        
          | 
         
        011 
        ⟩ 
        + 
        
          | 
         
        111 
        ⟩ 
        + 
        
          | 
         
        100 
        ⟩ 
        + 
        
          | 
         
        110 
        ⟩ 
        + 
        
          | 
         
        101 
        ⟩ 
        + 
        
          | 
         
        010 
        ⟩ 
        ) 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        . 
       
     
    {\displaystyle ={\frac {1}{2}}\cdot {\frac {1}{2{\sqrt {2}}}}(|000\rangle +|001\rangle +|011\rangle +|111\rangle +|100\rangle +|110\rangle +|101\rangle +|010\rangle )+{\frac {1}{\sqrt {2}}}|110\rangle .} 
   
 
  
    
      
        = 
        
          
            1 
            
              4 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          | 
         
        000 
        ⟩ 
        + 
        
          | 
         
        001 
        ⟩ 
        + 
        
          | 
         
        011 
        ⟩ 
        + 
        
          | 
         
        111 
        ⟩ 
        + 
        
          | 
         
        100 
        ⟩ 
        + 
        5 
        
          | 
         
        110 
        ⟩ 
        + 
        
          | 
         
        101 
        ⟩ 
        + 
        
          | 
         
        010 
        ⟩ 
        ) 
        . 
       
     
    {\displaystyle ={\frac {1}{4{\sqrt {2}}}}(|000\rangle +|001\rangle +|011\rangle +|111\rangle +|100\rangle +5|110\rangle +|101\rangle +|010\rangle ).} 
   
 
  
    
      
        ( 
        
          
            5 
            
              4 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        
          
            25 
            32 
           
         
        = 
        0.78125 
       
     
    {\displaystyle ({\frac {5}{4{\sqrt {2}}}})^{2}={\frac {25}{32}}=0.78125} 
   
 
  
    
      
        7 
        ( 
        
          
            1 
            
              4 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        + 
        
          
            25 
            32 
           
         
        = 
        7 
        ( 
        
          
            1 
            32 
           
         
        ) 
        + 
        
          
            25 
            32 
           
         
        = 
        1. 
       
     
    {\displaystyle 7({\frac {1}{4{\sqrt {2}}}})^{2}+{\frac {25}{32}}=7({\frac {1}{32}})+{\frac {25}{32}}=1.} 
   
 Po dar vienos groverio iteracijos G=MB, tikimybė išmatuoti |110> bus ~0.945 arba 94.5 %.
Toliau vėl praleisime visus kubitus pro M  vartus:
t=4, 
  
    
      
        M 
        ( 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        ) 
        = 
        ( 
        1 
        − 
        2 
        
          | 
         
        110 
        ⟩ 
        ⟨ 
        110 
        
          | 
         
        ) 
        ( 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle M({\frac {1}{2}}|\psi \rangle +{\frac {1}{\sqrt {2}}}|110\rangle )=(1-2|110\rangle \langle 110|)({\frac {1}{2}}|\psi \rangle +{\frac {1}{\sqrt {2}}}|110\rangle )=} 
   
  
  
    
      
        = 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            2 
           
         
        
          | 
         
        110 
        ⟩ 
        ⟨ 
        110 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        − 
        
          
            2 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        ⟨ 
        110 
        
          | 
         
        110 
        ⟩ 
        = 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        110 
        ⟩ 
        + 
        
          
            1 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        − 
        
          
            2 
            
              2 
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle ={\frac {1}{2}}|\psi \rangle -{\frac {2}{2}}|110\rangle \langle 110|\psi \rangle +{\frac {1}{\sqrt {2}}}|110\rangle -{\frac {2}{\sqrt {2}}}|110\rangle \langle 110|110\rangle ={\frac {1}{2}}|\psi \rangle -{\frac {1}{2{\sqrt {2}}}}|110\rangle +{\frac {1}{\sqrt {2}}}|110\rangle -{\frac {2}{\sqrt {2}}}|110\rangle =} 
   
 
  
    
      
        = 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            
              − 
              
                | 
               
              110 
              ⟩ 
              + 
              2 
              
                | 
               
              110 
              ⟩ 
              − 
              4 
              
                | 
               
              110 
              ⟩ 
             
            
              2 
              
                
                  2 
                 
               
             
           
         
        = 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            
              3 
              
                | 
               
              110 
              ⟩ 
             
            
              2 
              
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle ={\frac {1}{2}}|\psi \rangle +{\frac {-|110\rangle +2|110\rangle -4|110\rangle }{2{\sqrt {2}}}}={\frac {1}{2}}|\psi \rangle -{\frac {3|110\rangle }{2{\sqrt {2}}}}.} 
   
 Toliau praleisime tris pirmus kubitus pro B  vartus:
t=5, 
  
    
      
        B 
        ( 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            
              3 
              
                | 
               
              110 
              ⟩ 
             
            
              2 
              
                
                  2 
                 
               
             
           
         
        ) 
        = 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            
              3 
              
                | 
               
              110 
              ⟩ 
             
            
              2 
              
                
                  2 
                 
               
             
           
         
        ) 
        = 
       
     
    {\displaystyle B({\frac {1}{2}}|\psi \rangle -{\frac {3|110\rangle }{2{\sqrt {2}}}})=(2|\psi \rangle \langle \psi |-1)({\frac {1}{2}}|\psi \rangle -{\frac {3|110\rangle }{2{\sqrt {2}}}})=} 
   
  
  
    
      
        = 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            
              2 
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        110 
        ⟩ 
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            3 
            
              2 
             
           
         
        ⋅ 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
       
     
    {\displaystyle =|\psi \rangle \langle \psi |\psi \rangle -{\frac {1}{2}}|\psi \rangle -{\frac {3}{\sqrt {2}}}|\psi \rangle \langle \psi |110\rangle +{\frac {3}{2{\sqrt {2}}}}|110\rangle =|\psi \rangle -{\frac {1}{2}}|\psi \rangle -{\frac {3}{\sqrt {2}}}\cdot {\frac {1}{2{\sqrt {2}}}}|\psi \rangle +{\frac {3}{2{\sqrt {2}}}}|110\rangle =} 
   
 
  
    
      
        = 
        
          
            
              4 
              
                | 
               
              ψ 
              ⟩ 
              − 
              2 
              
                | 
               
              ψ 
              ⟩ 
              − 
              3 
              
                | 
               
              ψ 
              ⟩ 
             
            4 
           
         
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        110 
        ⟩ 
        = 
        − 
        
          
            1 
            4 
           
         
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          | 
         
        110 
        ⟩ 
        . 
       
     
    {\displaystyle ={\frac {4|\psi \rangle -2|\psi \rangle -3|\psi \rangle }{4}}+{\frac {3}{2{\sqrt {2}}}}|110\rangle =-{\frac {1}{4}}|\psi \rangle +{\frac {3}{2{\sqrt {2}}}}|110\rangle .} 
   
 Tikimybė išmatuoti ieškomą buseną (|110>) yra:
  
    
      
        ( 
        − 
        
          
            1 
            4 
           
         
        ⋅ 
        
          
            1 
            
              2 
              
                
                  2 
                 
               
             
           
         
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        − 
        
          
            1 
            
              8 
              
                
                  2 
                 
               
             
           
         
        + 
        
          
            3 
            
              2 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            
              − 
              1 
              + 
              3 
              ⋅ 
              4 
             
            
              8 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        ( 
        
          
            11 
            
              8 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        0.9453125 
       
     
    {\displaystyle (-{\frac {1}{4}}\cdot {\frac {1}{2{\sqrt {2}}}}+{\frac {3}{2{\sqrt {2}}}})^{2}=(-{\frac {1}{8{\sqrt {2}}}}+{\frac {3}{2{\sqrt {2}}}})^{2}=({\frac {-1+3\cdot 4}{8{\sqrt {2}}}})^{2}=({\frac {11}{8{\sqrt {2}}}})^{2}=0.9453125} 
   
 
  
    
      
        7 
        ( 
        
          
            
              − 
              1 
             
            
              8 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        + 
        ( 
        
          
            11 
            
              8 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        
          
            7 
            
              64 
              ⋅ 
              2 
             
           
         
        + 
        
          
            121 
            128 
           
         
        = 
        
          
            
              7 
              + 
              121 
             
            128 
           
         
        = 
        1. 
       
     
    {\displaystyle 7({\frac {-1}{8{\sqrt {2}}}})^{2}+({\frac {11}{8{\sqrt {2}}}})^{2}={\frac {7}{64\cdot 2}}+{\frac {121}{128}}={\frac {7+121}{128}}=1.} 
   
 Jeigu padarysime dar viena groverio iteracija G=MB, tai tikimybė išmatuoti |110> elementą bus 
  
    
      
        ( 
        
          
            13 
            
              16 
              
                
                  2 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        ≈ 
        0.330 
       
     
    {\displaystyle ({\frac {13}{16{\sqrt {2}}}})^{2}\approx 0.330} 
   
 visų  elementų amplitudės pasidaro neigiamos (-), kas ir parodo, kad jau viršytas iteracijų G limitas.
Groverio algoritmui groverio iteracijų r  reikia:
  
    
      
        r 
        → 
        
          
            
              π 
              
                
                  
                    2 
                    
                      n 
                     
                   
                 
               
             
            4 
           
         
        ≈ 
        
          
            
              2 
              
                n 
               
             
           
         
       
     
    {\displaystyle r\rightarrow {\frac {\pi {\sqrt {2^{n}}}}{4}}\approx {\sqrt {2^{n}}}} 
   
 
  
    
      
        r 
        → 
        
          
            
              π 
              
                
                  
                    2 
                    
                      3 
                     
                   
                 
               
             
            4 
           
         
        ≈ 
        2.221441469 
       
     
    {\displaystyle r\rightarrow {\frac {\pi {\sqrt {2^{3}}}}{4}}\approx 2.221441469} 
   
 
  
    
      
        r 
        → 
        
          
            
              π 
              
                
                  
                    2 
                    
                      4 
                     
                   
                 
               
             
            4 
           
         
        = 
        π 
        ≈ 
        3.141592654 
       
     
    {\displaystyle r\rightarrow {\frac {\pi {\sqrt {2^{4}}}}{4}}=\pi \approx 3.141592654} 
   
 Bet iteracijos gali būti tik sveiki skaičiai. Bet kai kubitų labai daug, tai ieškomo elemento gavimo tikimybė yra labai aukšta ir pakanka to, kad iteracijos atliekamos sveikais skaičiais.
  
    
      
        r 
        → 
        
          
            
              π 
              
                
                  
                    2 
                    
                      n 
                     
                   
                 
               
             
            4 
           
         
       
     
    {\displaystyle r\rightarrow {\frac {\pi {\sqrt {2^{n}}}}{4}}} 
   
 Rodyklė užsisuka už 90 laipsnių reikšmės, bet už tai gaunamas truputi tikslesnis atsakymas (visada?).
O jeigu norima, kad rodyklė neužsisuktų už 90 laipsnių stataus kampo, tai tada reikės viena groverio iteracija r  mažiau, bet atsakymas bus truputi mažiau tikslus:
  
    
      
        r 
        = 
        arccos 
         
        
          
            1 
            
              N 
             
           
         
        : 
        ( 
        2 
        arccos 
         
        
          
            
              
                N 
                − 
                1 
               
              N 
             
           
         
        ) 
        = 
        π 
        : 
        ( 
        4 
        arcsin 
         
        
          
            1 
            
              N 
             
           
         
        ) 
        − 
        0.5 
       
     
    {\displaystyle r=\arccos {\frac {1}{\sqrt {N}}}:(2\arccos {\sqrt {\frac {N-1}{N}}})=\pi :(4\arcsin {\frac {1}{\sqrt {N}}})-0.5} 
   
 Laikoma, kad tokiu budu gautas iteracijų skaičius yra tikslus, nors gaunamas mažesnis teisigno atsakymo tikslumas. N=2n , kur n  kubitų skaičius.
Reikia žinoti kampą:
  
    
      
        θ 
        = 
        2 
        arccos 
         
        ( 
        
          
            1 
            − 
            
              
                1 
                
                  2 
                  
                    n 
                   
                 
               
             
           
         
        ) 
        = 
        2 
        arcsin 
         
        
          
            1 
            
              
                2 
                
                  n 
                 
               
             
           
         
        , 
       
     
    {\displaystyle \theta =2\arccos({\sqrt {1-{\frac {1}{2^{n}}}}})=2\arcsin {\frac {1}{\sqrt {2^{n}}}},} 
   
 kur n  yra kubitų skaičius.
Tada galima surasti ieškomo elemento |t> amplitudę:
  
    
      
        sin 
         
        ( 
        
          
            
              2 
              r 
              + 
              1 
             
            2 
           
         
        θ 
        ) 
        
          | 
         
        t 
        ⟩ 
       
     
    {\displaystyle \sin({\frac {2r+1}{2}}\theta )|t\rangle } 
   
 kur t  yra ieškomas elementas, r  yra groverio iteracijų skaičius.
O tikimybė išmatuoti ieškomą elementą yra:
  
    
      
        p 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              r 
              + 
              1 
             
            2 
           
         
        θ 
        ) 
        . 
       
     
    {\displaystyle p=\sin ^{2}({\frac {2r+1}{2}}\theta ).} 
   
 Visų likusių elementų amplitudė kartu sudėjus yra:
  
    
      
        cos 
         
        ( 
        
          
            
              2 
              r 
              + 
              1 
             
            2 
           
         
        θ 
        ) 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            1 
            
              2 
              
                n 
               
             
           
         
        
          | 
         
        t 
        ⟩ 
        ) 
       
     
    {\displaystyle \cos({\frac {2r+1}{2}}\theta )(|\psi \rangle -{\frac {1}{2^{n}}}|t\rangle )} 
   
 O tikimybė išmatuoti klaidingą atsakymą (būseną) yra:
  
    
      
        p 
        = 
        
          cos 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              r 
              + 
              1 
             
            2 
           
         
        θ 
        ) 
        . 
       
     
    {\displaystyle p=\cos ^{2}({\frac {2r+1}{2}}\theta ).} 
   
 
  
    
      
        θ 
        = 
        2 
        arccos 
         
        ( 
        
          
            1 
            − 
            
              
                1 
                
                  2 
                  
                    3 
                   
                 
               
             
           
         
        ) 
        = 
        2 
        arccos 
         
        
          
            0.875 
           
         
        ≈ 
        0.722734247. 
       
     
    {\displaystyle \theta =2\arccos({\sqrt {1-{\frac {1}{2^{3}}}}})=2\arccos {\sqrt {0.875}}\approx 0.722734247.} 
   
 Tikimybė išmatuoti ieškomą elementą yra:
  
    
      
        p 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              ⋅ 
              2 
              + 
              1 
             
            2 
           
         
        0.722734247 
        ) 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        2.5 
        ⋅ 
        0.722734247 
        ) 
        ≈ 
        
          0.972271824 
          
            2 
           
         
        = 
        0.9453125. 
       
     
    {\displaystyle p=\sin ^{2}({\frac {2\cdot 2+1}{2}}0.722734247)=\sin ^{2}(2.5\cdot 0.722734247)\approx 0.972271824^{2}=0.9453125.} 
   
 
  
    
      
        θ 
        = 
        2 
        arcsin 
         
        
          
            1 
            
              
                2 
                
                  4 
                 
               
             
           
         
        ≈ 
        0.50536051. 
       
     
    {\displaystyle \theta =2\arcsin {\frac {1}{\sqrt {2^{4}}}}\approx 0.50536051.} 
   
 Tikimybė išmatuoti ieškomą elementą yra:
  
    
      
        p 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              ⋅ 
              3 
              + 
              1 
             
            2 
           
         
        ⋅ 
        0.50536051 
        ) 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        3.5 
        ⋅ 
        0.50536051 
        ) 
        ≈ 
        
          0.98046875 
          
            2 
           
         
        ≈ 
        0.961318969. 
       
     
    {\displaystyle p=\sin ^{2}({\frac {2\cdot 3+1}{2}}\cdot 0.50536051)=\sin ^{2}(3.5\cdot 0.50536051)\approx 0.98046875^{2}\approx 0.961318969.} 
   
 Groverio Iteracija: iš pradžių ieškomas elementas pažymimas neigiama amplitude, o paskui jo amplitudė apsukama apie vidurkį. Norint paprastai ir greitai suskaičiuoti teisingo atsakymo gavimo tikimybę po vienos groverio iteracijos G , galima naudotis šia formule:
  
    
      
        p 
        = 
        ( 
        
          
            
              3 
              N 
              − 
              4 
             
            
              N 
              
                
                  N 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle p=({\frac {3N-4}{N{\sqrt {N}}}})^{2}} 
   
 Kur 
  
    
      
        N 
        = 
        
          2 
          
            n 
           
         
       
     
    {\displaystyle N=2^{n}} 
   
 n  kubitų skaičius.
Pavyzdžiui, kai N=8:
  
    
      
        p 
        = 
        ( 
        
          
            
              3 
              ⋅ 
              8 
              − 
              4 
             
            
              8 
              
                
                  8 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        0.78125 
       
     
    {\displaystyle p=({\frac {3\cdot 8-4}{8{\sqrt {8}}}})^{2}=0.78125} 
   
 Kai N=16:
  
    
      
        p 
        = 
        ( 
        
          
            
              3 
              ⋅ 
              16 
              − 
              4 
             
            
              16 
              
                
                  16 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        = 
        0.47265625 
       
     
    {\displaystyle p=({\frac {3\cdot 16-4}{16{\sqrt {16}}}})^{2}=0.47265625} 
   
 Kai N=1024:
  
    
      
        p 
        = 
        ( 
        
          
            
              3 
              ⋅ 
              1024 
              − 
              4 
             
            
              1024 
              
                
                  1024 
                 
               
             
           
         
        
          ) 
          
            2 
           
         
        ≈ 
        0.008766189 
       
     
    {\displaystyle p=({\frac {3\cdot 1024-4}{1024{\sqrt {1024}}}})^{2}\approx 0.008766189} 
   
 Apytiksliai sužinoti teisingo atsakymo tikimybę po betkiek Groverio iteracijų galima pagal formulę:
  
    
      
        p 
        = 
        
          
            
              r 
              
                2 
               
             
            
              2 
              
                n 
               
             
           
         
       
     
    {\displaystyle p={\frac {r^{2}}{2^{n}}}} 
   
 r  yra iteracijų skaičius. Bet ši formulė takityna tik kai kubitų ir iteracijų skaičius yra didelis (daugiau nei 100).
Jeigu kubitų yra daugiau negu užduoties, kurią reikia išspresti, kintamųjų arba tiek pat (m ≤n ), tada Groverio iteracijų skaičių r  galima apytiksliai apskaičiuoti pagal formulę:
  
    
      
        r 
        ≈ 
        
          
            M 
           
         
        = 
        
          
            
              2 
              
                m 
               
             
           
         
        = 
        
          2 
          
            
              m 
              2 
             
           
         
       
     
    {\displaystyle r\approx {\sqrt {M}}={\sqrt {2^{m}}}=2^{\frac {m}{2}}} 
   
 o tikimybę p , pagal formulę: 
  
    
      
        p 
        ≈ 
        
          
            
              r 
              
                2 
               
             
            
              2 
              
                m 
               
             
           
         
        , 
        
          r 
          
            2 
           
         
        < 
        
          2 
          
            m 
           
         
        , 
       
     
    {\displaystyle p\approx {r^{2} \over 2^{m}},\;r^{2}<2^{m},} 
   
 kur m  yra užduoties kintamųjų skaičius, o n  yra kubitų skaičius.
Jeigu kubitų n  yra mažiau negu kintamųjų m  (elementų doumenų bazėje yra 
  
    
      
        
          2 
          
            m 
           
         
       
     
    {\displaystyle 2^{m}} 
   
 
  
    
      
        m 
        > 
        n 
       
     
    {\displaystyle m>n} 
   
 p  gaunama pagal formulę:
  
    
      
        p 
        = 
        
          
            
              
                
                  2 
                  
                    n 
                   
                 
               
             
            
              2 
              
                m 
               
             
           
         
        = 
        
          2 
          
            
              
                n 
                2 
               
             
            − 
            m 
           
         
        = 
        
          
            
              r 
              
                2 
               
             
            
              2 
              
                m 
               
             
           
         
        , 
       
     
    {\displaystyle p={{\sqrt {2^{n}}} \over 2^{m}}=2^{{n \over 2}-m}={r^{2} \over 2^{m}},} 
   
 kur r  yra Groverio iteracijų skaičius, 
  
    
      
        
          r 
          
            2 
           
         
        < 
        
          2 
          
            n 
           
         
        . 
       
     
    {\displaystyle r^{2}<2^{n}.} 
   
 
Atsakymas gaunamas su 100 % tikimybe, nes:
  
    
      
        r 
        → 
        
          
            
              π 
              
                
                  
                    2 
                    
                      n 
                     
                   
                 
               
             
            4 
           
         
        = 
        
          
            
              π 
              
                
                  
                    2 
                    
                      2 
                     
                   
                 
               
             
            4 
           
         
        = 
        
          
            π 
            2 
           
         
        ≈ 
        1.570796327 
       
     
    {\displaystyle r\rightarrow {\frac {\pi {\sqrt {2^{n}}}}{4}}={\frac {\pi {\sqrt {2^{2}}}}{4}}={\frac {\pi }{2}}\approx 1.570796327} 
   
 
  
    
      
        θ 
        = 
        2 
        arcsin 
         
        
          
            1 
            
              
                2 
                
                  n 
                 
               
             
           
         
        = 
        2 
        arcsin 
         
        
          
            1 
            
              
                2 
                
                  2 
                 
               
             
           
         
        ≈ 
        1.047197551 
       
     
    {\displaystyle \theta =2\arcsin {\frac {1}{\sqrt {2^{n}}}}=2\arcsin {\frac {1}{\sqrt {2^{2}}}}\approx 1.047197551} 
   
 Tikimybė išmatuoti ieškomą elementą yra:
  
    
      
        p 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              ⋅ 
              r 
              + 
              1 
             
            2 
           
         
        ⋅ 
        θ 
        ) 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        
          
            
              2 
              ⋅ 
              1 
              + 
              1 
             
            2 
           
         
        ⋅ 
        1.047197551 
        ) 
        = 
        
          sin 
          
            2 
           
         
         
        ( 
        1.5 
        ⋅ 
        1.047197551 
        ) 
        = 
        
          1 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle p=\sin ^{2}({\frac {2\cdot r+1}{2}}\cdot \theta )=\sin ^{2}({\frac {2\cdot 1+1}{2}}\cdot 1.047197551)=\sin ^{2}(1.5\cdot 1.047197551)=1^{2}=1.} 
   
 Pagal šią formulę, iteracijų skaičius yra sveikas skaičius (kaip beje ir teisingo atsakymo tikimybė):
  
    
      
        r 
        = 
        π 
        : 
        ( 
        4 
        arcsin 
         
        
          
            1 
            
              
                2 
                
                  2 
                 
               
             
           
         
        ) 
        − 
        0.5 
        = 
        
          
            3.141592654 
            
              4 
              ⋅ 
              0.523598775 
             
           
         
        − 
        0.5 
        = 
        1.5 
        − 
        0.5 
        = 
        1 
       
     
    {\displaystyle r=\pi :(4\arcsin {\frac {1}{\sqrt {2^{2}}}})-0.5={\frac {3.141592654}{4\cdot 0.523598775}}-0.5=1.5-0.5=1} 
   
 Pavyzdžiui, surasime |01>:
  
    
      
        
          | 
         
        00 
        ⟩ 
        → 
        
          
            1 
            
              
                
                  2 
                  
                    2 
                   
                 
               
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        ( 
        
          | 
         
        0 
        ⟩ 
        + 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          
            1 
            2 
           
         
        ( 
        
          | 
         
        00 
        ⟩ 
        + 
        
          | 
         
        01 
        ⟩ 
        + 
        
          | 
         
        10 
        ⟩ 
        + 
        
          | 
         
        11 
        ⟩ 
        ) 
        → 
        ( 
        1 
        − 
        2 
        
          | 
         
        01 
        ⟩ 
        ⟨ 
        01 
        
          | 
         
        ) 
        
          | 
         
        ψ 
        ⟩ 
        = 
       
     
    {\displaystyle |00\rangle \to {1 \over {\sqrt {2^{2}}}}(|0\rangle +|1\rangle )(|0\rangle +|1\rangle )=|\psi \rangle ={1 \over 2}(|00\rangle +|01\rangle +|10\rangle +|11\rangle )\to (1-2|01\rangle \langle 01|)|\psi \rangle =} 
   
 
  
    
      
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                
                  2 
                  
                    2 
                   
                 
               
             
           
         
        
          | 
         
        01 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        01 
        ⟩ 
        = 
        
          
            1 
            2 
           
         
        ( 
        
          | 
         
        00 
        ⟩ 
        − 
        
          | 
         
        01 
        ⟩ 
        + 
        
          | 
         
        10 
        ⟩ 
        + 
        
          | 
         
        11 
        ⟩ 
        ) 
        → 
        ( 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        − 
        1 
        ) 
        ( 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        01 
        ⟩ 
        ) 
        = 
       
     
    {\displaystyle =|\psi \rangle -{2 \over {\sqrt {2^{2}}}}|01\rangle =|\psi \rangle -|01\rangle ={1 \over 2}(|00\rangle -|01\rangle +|10\rangle +|11\rangle )\to (2|\psi \rangle \langle \psi |-1)(|\psi \rangle -|01\rangle )=} 
   
 
  
    
      
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        ψ 
        ⟩ 
        − 
        2 
        
          | 
         
        ψ 
        ⟩ 
        ⟨ 
        ψ 
        
          | 
         
        01 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          | 
         
        01 
        ⟩ 
        = 
        2 
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          
            2 
            
              
                
                  2 
                  
                    2 
                   
                 
               
             
           
         
        
          | 
         
        ψ 
        ⟩ 
        − 
        
          | 
         
        ψ 
        ⟩ 
        + 
        
          | 
         
        01 
        ⟩ 
        = 
        
          | 
         
        01 
        ⟩ 
        . 
       
     
    {\displaystyle =2|\psi \rangle \langle \psi |\psi \rangle -2|\psi \rangle \langle \psi |01\rangle -|\psi \rangle +|01\rangle =2|\psi \rangle -{2 \over {\sqrt {2^{2}}}}|\psi \rangle -|\psi \rangle +|01\rangle =|01\rangle .} 
   
 
Turime 
  
    
      
        
          | 
         
        0 
        
          ⟩ 
          
            ⊕ 
            n 
           
         
        
          | 
         
        1 
        ⟩ 
       
     
    {\displaystyle |0\rangle ^{\oplus n}|1\rangle } 
   
 
  
    
      
        n 
        + 
        1 
       
     
    {\displaystyle n+1} 
   
 
  
    
      
        
          
            1 
            
              
                
                  2 
                  
                    n 
                    + 
                    1 
                   
                 
               
             
           
         
        
          ∑ 
          
            
              x 
              
                1 
               
             
           
          
            
              2 
              
                n 
               
             
           
         
        
          | 
         
        x 
        ⟩ 
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        
          | 
         
        ψ 
        ⟩ 
        
          
            1 
            
              
                2 
               
             
           
         
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        = 
        
          | 
         
        ψ 
        ⟩ 
        
          | 
         
        − 
        ⟩ 
        . 
       
     
    {\displaystyle {1 \over {\sqrt {2^{n+1}}}}\sum _{x_{1}}^{2^{n}}|x\rangle (|0\rangle -|1\rangle )=|\psi \rangle {1 \over {\sqrt {2}}}(|0\rangle -|1\rangle )=|\psi \rangle |-\rangle .} 
   
 Toliau praleidžiame per funkciją 
  
    
      
        
          | 
         
        x 
        ⟩ 
        
          | 
         
        y 
        ⟩ 
        → 
        
          | 
         
        x 
        ⟩ 
        
          | 
         
        y 
        ⊕ 
        f 
        ( 
        x 
        ) 
        ⟩ 
        : 
       
     
    {\displaystyle |x\rangle |y\rangle \to |x\rangle |y\oplus f(x)\rangle :} 
   
  
  
    
      
        
          
            1 
            
              
                
                  2 
                  
                    n 
                    + 
                    1 
                   
                 
               
             
           
         
        
          ∑ 
          
            
              x 
              
                1 
               
             
           
          
            
              2 
              
                n 
               
             
           
         
        
          | 
         
        x 
        ⟩ 
        ( 
        
          | 
         
        0 
        ⊕ 
        f 
        ( 
        x 
        ) 
        ⟩ 
        − 
        
          | 
         
        1 
        ⊕ 
        f 
        ( 
        x 
        ) 
        ⟩ 
        ) 
        = 
        
          
            1 
            
              
                
                  2 
                  
                    n 
                    + 
                    1 
                   
                 
               
             
           
         
        
          ∑ 
          
            
              x 
              
                1 
               
             
           
          
            
              2 
              
                n 
               
             
           
         
        ( 
        − 
        1 
        
          ) 
          
            f 
            ( 
            x 
            ) 
           
         
        
          | 
         
        x 
        ⟩ 
        ( 
        
          | 
         
        0 
        ⟩ 
        − 
        
          | 
         
        1 
        ⟩ 
        ) 
        , 
       
     
    {\displaystyle {1 \over {\sqrt {2^{n+1}}}}\sum _{x_{1}}^{2^{n}}|x\rangle (|0\oplus f(x)\rangle -|1\oplus f(x)\rangle )={1 \over {\sqrt {2^{n+1}}}}\sum _{x_{1}}^{2^{n}}(-1)^{f(x)}|x\rangle (|0\rangle -|1\rangle ),} 
   
 taigi, jeigu 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        1 
        , 
       
     
    {\displaystyle f(x)=1,} 
   
 
  
    
      
        − 
       
     
    {\displaystyle -}