Caesium iodide
CsI crystal 
 | |
Scintillating CsI crystal 
 | |
Crystal structure 
 | |
| Names | |
|---|---|
| IUPAC name
 Caesium iodide 
 | |
| Other names
 Cesium iodide 
 | |
| Identifiers | |
3D model (JSmol) 
 | 
|
| ChemSpider | |
| ECHA InfoCard | 100.029.223 | 
| EC Number | 
  | 
PubChem CID 
 | 
|
| RTECS number | 
  | 
| UNII | |
CompTox Dashboard (EPA) 
 | 
|
  | |
  | |
| Properties | |
| CsI | |
| Molar mass | 259.809 g/mol[2] | 
| Appearance | white crystalline solid | 
| Density | 4.51 g/cm3[2] | 
| Melting point | 632 °C (1,170 °F; 905 K)[2] | 
| Boiling point | 1,280 °C (2,340 °F; 1,550 K)[2] | 
| 848 g/L (25 °C)[2] | |
| −82.6·10−6 cm3/mol[3] | |
Refractive index (nD) 
 | 
1.9790 (0.3 µm) 1.7873 (0.59 µm) 1.7694 (0.75 µm) 1.7576 (1 µm) 1.7428 (5 µm) 1.7280 (20 µm)[4]  | 
| Structure | |
| CsCl, cP2 | |
| Pm3m, No. 221[5] | |
a = 0.4503 nm 
 | |
Lattice volume (V) 
 | 
0.0913 nm3 | 
Formula units (Z) 
 | 
1 | 
| Cubic (Cs+) Cubic (I−)  | |
| Thermochemistry | |
Heat capacity (C) 
 | 
52.8 J/mol·K[6] | 
Std molar 
entropy (S⦵298)  | 
123.1 J/mol·K[6] | 
Std enthalpy of 
formation (ΔfH⦵298)  | 
−346.6 kJ/mol[6] | 
Gibbs free energy (ΔfG⦵) 
 | 
−340.6 kJ/mol[6] | 
| Hazards | |
| GHS labelling: | |
| Warning | |
| H315, H317, H319, H335 | |
| P201, P202, P261, P264, P270, P271, P272, P273, P280, P281, P301+P312, P302+P352, P304+P340, P305+P351+P338, P308+P313, P312, P321, P330, P332+P313, P333+P313, P337+P313, P362, P363, P391, P403+P233, P405, P501 | |
| Flash point | Non-flammable | 
| Lethal dose or concentration (LD, LC): | |
LD50 (median dose) 
 | 
2386 mg/kg (oral, rat)[1] | 
| Related compounds | |
Other anions 
 | 
Caesium fluoride Caesium chloride Caesium bromide Caesium astatide  | 
Other cations 
 | 
Lithium iodide Sodium iodide Potassium iodide Rubidium iodide Francium iodide  | 
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). 
 | |
Caesium iodide or cesium iodide (chemical formula CsI) is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths.[7]
Synthesis and structure
[edit]
Bulk caesium iodide crystals have the cubic CsCl crystal structure, but the structure type of nanometer-thin CsI films depends on the substrate material – it is CsCl for mica and NaCl for LiF, NaBr and NaCl substrates.[9]
Caesium iodide atomic chains can be grown inside double-wall carbon nanotubes. In such chains I atoms appear brighter than Cs atoms in electron micrographs despite having a smaller mass. This difference was explained by the charge difference between Cs atoms (positive), inner nanotube walls (negative) and I atoms (negative). As a result, Cs atoms are attracted to the walls and vibrate more strongly than I atoms, which are pushed toward the nanotube axis.[8]
Properties
[edit]| Т (°C) | 0 | 10 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S (wt%) | 30.9 | 37.2 | 43.2 | 45.9 | 48.6 | 53.3 | 57.3 | 60.7 | 63.6 | 65.9 | 67.7 | 69.2 | 
Applications
[edit]An important application of caesium iodide crystals, which are scintillators, is electromagnetic calorimetry in experimental particle physics. Pure CsI is a fast and dense scintillating material with relatively low light yield that increases significantly with cooling,[11] and a fairly small Molière radius is 3.5 cm. It exhibits two main emission components: one in the near ultraviolet region at the wavelength of 310 nm and one at 460 nm. The drawbacks of CsI are a high temperature gradient and a slight hygroscopicity.
Caesium iodide is used as a beamsplitter in Fourier transform infrared (FTIR) spectrometers. It has a wider transmission range than the more common potassium bromide beamsplitters, working range into the far infrared. However, optical-quality CsI crystals are very soft and hard to cleave or polish. They should also be coated (typically with germanium) and stored in a desiccator, to minimize interaction with atmospheric water vapors.[12]
In addition to image intensifier input phosphors, caesium iodide is often also used in medicine as the scintillating material in flat panel x-ray detectors.[13]
References
[edit]- ^ a b Cesium iodide. U.S. National Library of Medicine
 - ^ a b c d e Haynes, p. 4.57
 - ^ Haynes, p. 4.132
 - ^ Haynes, p. 10.240
 - ^ Huang, Tzuen-Luh; Ruoff, Arthur L. (1984). "Equation of state and high-pressure phase transition of CsI". Physical Review B. 29 (2): 1112. Bibcode:1984PhRvB..29.1112H. doi:10.1103/PhysRevB.29.1112.
 - ^ a b c d Haynes, p. 5.10
 - ^ Kowalski, M. P.; Fritz, G. G.; Cruddace, R. G.; Unzicker, A. E.; Swanson, N. (1986). "Quantum efficiency of cesium iodide photocathodes at soft x-ray and extreme ultraviolet wavelengths". Applied Optics. 25 (14): 2440. Bibcode:1986ApOpt..25.2440K. doi:10.1364/AO.25.002440. PMID 18231513.
 - ^ a b Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu (2014). "Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes". Nature Materials. 13 (11): 1050–4. Bibcode:2014NatMa..13.1050S. doi:10.1038/nmat4069. PMID 25218060.
 - ^ Schulz, L. G. (1951). "Polymorphism of cesium and thallium halides". Acta Crystallographica. 4 (6): 487–489. Bibcode:1951AcCry...4..487S. doi:10.1107/S0365110X51001641.
 - ^ Haynes, p. 5.191
 - ^ Mikhailik, V.; Kapustyanyk, V.; Tsybulskyi, V.; Rudyk, V.; Kraus, H. (2015). "Luminescence and scintillation properties of CsI: A potential cryogenic scintillator". Physica Status Solidi B. 252 (4): 804–810. arXiv:1411.6246. Bibcode:2015PSSBR.252..804M. doi:10.1002/pssb.201451464. S2CID 118668972.
 - ^ Sun, Da-Wen (2009). Infrared Spectroscopy for Food Quality Analysis and Control. Academic Press. pp. 158–. ISBN 978-0-08-092087-0.
 - ^ Lança, Luís; Silva, Augusto (2012). "Digital Radiography Detectors: A Technical Overview" (PDF). Digital Imaging Systems for Plain Radiography. Springer. doi:10.1007/978-1-4614-5067-2_2. hdl:10400.21/1932. ISBN 978-1-4614-5066-5. Archived from the original (PDF) on 2019-01-28. Retrieved 2017-08-28.
 
Cited sources
[edit]- Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida: CRC Press. ISBN 1-4398-5511-0.
 



