Uniform 1 k2 polytope
In geometry, 1k2 polytope is a uniform polytope in n dimensions (n = k + 4) constructed from the En Coxeter group. The family was named by their Coxeter symbol 1k2 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. It can be named by an extended Schläfli symbol {3,3k,2}.
Family members
[edit]The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-demicube (demipenteract) in 5 dimensions, and the 4-simplex (5-cell) in 4 dimensions.
Each polytope is constructed from 1k−1,2 and (n−1)-demicube facets. Each has a vertex figure of a {31,n−2,2} polytope, is a birectified n-simplex, t2{3n}.
The sequence ends with k = 6 (n = 10), as an infinite tessellation of 9-dimensional hyperbolic space.
The complete family of 1k2 polytopes are:
- 5-cell: 102, (5 tetrahedral cells)
 - 112 polytope, (16 5-cell, and 10 16-cell facets)
 - 122 polytope, (54 demipenteract facets)
 - 132 polytope, (56 122 and 126 demihexeract facets)
 - 142 polytope, (240 132 and 2160 demihepteract facets)
 - 152 honeycomb, tessellates Euclidean 8-space (∞ 142 and ∞ demiocteract facets)
 - 162 honeycomb, tessellates hyperbolic 9-space (∞ 152 and ∞ demienneract facets)
 
Elements
[edit]| n | 1k2 | Petrie polygon projection  | 
Name Coxeter-Dynkin diagram  | 
Facets | Elements | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1k−1,2 | (n−1)-demicube | Vertices | Edges | Faces | Cells | 4-faces | 5-faces | 6-faces | 7-faces | ||||
| 4 | 102 | 120 | 
-- | 5 110  | 
5 | 10 | 10 | 
5 | 
|||||
| 5 | 112 | 121 | 
16 120  | 
10 111  | 
16 | 80 | 160 | 
120 | 
26 | 
||||
| 6 | 122 | 122 | 
27 112  | 
27 121  | 
72 | 720 | 2160 | 
2160 | 
702 | 
54 | 
|||
| 7 | 132 | 132 | 
56 122  | 
126 131  | 
576 | 10080 | 40320 | 
50400 | 
23688 | 
4284 | 
182 | 
||
| 8 | 142 | 142 | 
240 132  | 
2160 141  | 
17280 | 483840 | 2419200 | 
3628800 | 
2298240 | 
725760 | 
106080 | 
2400 | |
| 9 | 152 | 152 (8-space tessellation)  | 
∞ 142  | 
∞ 151  | 
∞ | ||||||||
| 10 | 162 | 162 (9-space hyperbolic tessellation)  | 
∞ 152  | 
∞ 161  | 
∞ | ||||||||
See also
[edit]- k21 polytope family
 - 2k1 polytope family
 
References
[edit]- A. Boole Stott (1910). "Geometrical deduction of semiregular from regular polytopes and space fillings" (PDF). Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. XI (1). Amsterdam: Johannes Müller. Archived from the original (PDF) on 29 April 2025.
 - P. H. Schoute (1911). "Analytical treatment of the polytopes regularly derived from the regular polytopes" (PDF). Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. Section I. XI (3). Amsterdam: Johannes Müller. Archived from the original (PDF) on 22 January 2025.
 - P. H. Schoute (1913). "Analytical treatment of the polytopes regularly derived from the regular polytopes" (PDF). Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. Sections II, III, IV. XI (5). Amsterdam: Johannes Müller. Archived from the original (PDF) on 22 February 2025.
 - H. S. M. Coxeter: Regular and Semi-Regular Polytopes, Part I, Mathematische Zeitschrift, Springer, Berlin, 1940
 - N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
 - H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part II, Mathematische Zeitschrift, Springer, Berlin, 1985
 - H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part III, Mathematische Zeitschrift, Springer, Berlin, 1988
 
External links
[edit]| Space | Family | / / | ||||
|---|---|---|---|---|---|---|
| E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal | 
| E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
| E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb | 
| E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
| E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 | 
| E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 | 
| E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 | 
| E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
| E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
| En−1 | Uniform (n−1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |