From Wikipedia, the free encyclopedia
					 
					
In mathematics , the symplectization  (or symplectification ) of a contact manifold  is a symplectic manifold  which naturally corresponds to it.
Let 
  
    
      
        ( 
        V 
        , 
        ξ 
        ) 
       
     
    {\displaystyle (V,\xi )} 
   
 
  
    
      
        x 
        ∈ 
        V 
       
     
    {\displaystyle x\in V} 
   
 
  
    
      
        
          S 
          
            x 
           
         
        V 
        = 
        { 
        β 
        ∈ 
        
          T 
          
            x 
           
          
            ∗ 
           
         
        V 
        − 
        { 
        0 
        } 
        ∣ 
        ker 
         
        β 
        = 
        
          ξ 
          
            x 
           
         
        } 
        ⊂ 
        
          T 
          
            x 
           
          
            ∗ 
           
         
        V 
       
     
    {\displaystyle S_{x}V=\{\beta \in T_{x}^{*}V-\{0\}\mid \ker \beta =\xi _{x}\}\subset T_{x}^{*}V} 
   
 of all nonzero 1-forms  at 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        
          ξ 
          
            x 
           
         
       
     
    {\displaystyle \xi _{x}} 
   
 
  
    
      
        S 
        V 
        = 
        
          ⋃ 
          
            x 
            ∈ 
            V 
           
         
        
          S 
          
            x 
           
         
        V 
        ⊂ 
        
          T 
          
            ∗ 
           
         
        V 
       
     
    {\displaystyle SV=\bigcup _{x\in V}S_{x}V\subset T^{*}V} 
   
 is a symplectic submanifold  of the cotangent bundle  of 
  
    
      
        V 
       
     
    {\displaystyle V} 
   
 
The projection  
  
    
      
        π 
        : 
        S 
        V 
        → 
        V 
       
     
    {\displaystyle \pi :SV\to V} 
   
 principal bundle  over 
  
    
      
        V 
       
     
    {\displaystyle V} 
   
 structure group  
  
    
      
        
          
            R 
           
          
            ∗ 
           
         
        ≡ 
        
          R 
         
        − 
        { 
        0 
        } 
       
     
    {\displaystyle \mathbb {R} ^{*}\equiv \mathbb {R} -\{0\}} 
   
 
The coorientable case [ edit ] When the contact structure  
  
    
      
        ξ 
       
     
    {\displaystyle \xi } 
   
 cooriented  by means of a contact form  
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        ξ 
       
     
    {\displaystyle \xi } 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        
          S 
          
            x 
           
          
            + 
           
         
        V 
        = 
        { 
        β 
        ∈ 
        
          T 
          
            x 
           
          
            ∗ 
           
         
        V 
        − 
        { 
        0 
        } 
        
          | 
         
        β 
        = 
        λ 
        α 
        , 
        λ 
        > 
        0 
        } 
        ⊂ 
        
          T 
          
            x 
           
          
            ∗ 
           
         
        V 
        , 
       
     
    {\displaystyle S_{x}^{+}V=\{\beta \in T_{x}^{*}V-\{0\}\,|\,\beta =\lambda \alpha ,\,\lambda >0\}\subset T_{x}^{*}V,} 
   
 
  
    
      
        
          S 
          
            + 
           
         
        V 
        = 
        
          ⋃ 
          
            x 
            ∈ 
            V 
           
         
        
          S 
          
            x 
           
          
            + 
           
         
        V 
        ⊂ 
        
          T 
          
            ∗ 
           
         
        V 
        . 
       
     
    {\displaystyle S^{+}V=\bigcup _{x\in V}S_{x}^{+}V\subset T^{*}V.} 
   
 Note that 
  
    
      
        ξ 
       
     
    {\displaystyle \xi } 
   
 
  
    
      
        π 
        : 
        S 
        V 
        → 
        V 
       
     
    {\displaystyle \pi :SV\to V} 
   
 trivial . Any section  of this bundle is a coorienting form for the contact structure.