In mathematics , the Segre class  is a characteristic class  used in the study of cones , a generalization of vector bundles . For vector bundles the total Segre class is inverse to the total Chern class , and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not.
The Segre class was introduced in the non-singular case by Beniamino Segre  (1953).[ 1] intersection theory  in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.[ 2] 
Suppose that 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 cone  over 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 projective completion  
  
    
      
        
          P 
         
        ( 
        C 
        ⊕ 
        1 
        ) 
       
     
    {\displaystyle \mathbb {P} (C\oplus 1)} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        
          
            O 
           
         
        ( 
        1 
        ) 
       
     
    {\displaystyle {\mathcal {O}}(1)} 
   
 anti-tautological line bundle  on 
  
    
      
        
          P 
         
        ( 
        C 
        ⊕ 
        1 
        ) 
       
     
    {\displaystyle \mathbb {P} (C\oplus 1)} 
   
 Chern class  
  
    
      
        
          c 
          
            1 
           
         
        ( 
        
          
            O 
           
         
        ( 
        1 
        ) 
        ) 
       
     
    {\displaystyle c_{1}({\mathcal {O}}(1))} 
   
 Chow group  of 
  
    
      
        
          P 
         
        ( 
        C 
        ⊕ 
        1 
        ) 
       
     
    {\displaystyle \mathbb {P} (C\oplus 1)} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        s 
        ( 
        C 
        ) 
        = 
        
          q 
          
            ∗ 
           
         
        
          ( 
          
            
              ∑ 
              
                i 
                ≥ 
                0 
               
             
            
              c 
              
                1 
               
             
            ( 
            
              
                O 
               
             
            ( 
            1 
            ) 
            
              ) 
              
                i 
               
             
            [ 
            
              P 
             
            ( 
            C 
            ⊕ 
            1 
            ) 
            ] 
           
          ) 
         
        . 
       
     
    {\displaystyle s(C)=q_{*}\left(\sum _{i\geq 0}c_{1}({\mathcal {O}}(1))^{i}[\mathbb {P} (C\oplus 1)]\right).} 
   
 The 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
 
  
    
      
        
          s 
          
            i 
           
         
        ( 
        C 
        ) 
       
     
    {\displaystyle s_{i}(C)} 
   
 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
 
  
    
      
        s 
        ( 
        C 
        ) 
       
     
    {\displaystyle s(C)} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        r 
       
     
    {\displaystyle r} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        
          s 
          
            i 
           
         
        ( 
        C 
        ) 
        = 
        
          q 
          
            ∗ 
           
         
        
          ( 
          
            
              c 
              
                1 
               
             
            ( 
            
              
                O 
               
             
            ( 
            1 
            ) 
            
              ) 
              
                r 
                + 
                i 
               
             
            [ 
            
              P 
             
            ( 
            C 
            ⊕ 
            1 
            ) 
            ] 
           
          ) 
         
        . 
       
     
    {\displaystyle s_{i}(C)=q_{*}\left(c_{1}({\mathcal {O}}(1))^{r+i}[\mathbb {P} (C\oplus 1)]\right).} 
   
 The reason for using 
  
    
      
        
          P 
         
        ( 
        C 
        ⊕ 
        1 
        ) 
       
     
    {\displaystyle \mathbb {P} (C\oplus 1)} 
   
 
  
    
      
        
          P 
         
        ( 
        C 
        ) 
       
     
    {\displaystyle \mathbb {P} (C)} 
   
 
  
    
      
        
          
            O 
           
         
       
     
    {\displaystyle {\mathcal {O}}} 
   
 
If Z  is a closed subscheme of an algebraic scheme X , then 
  
    
      
        s 
        ( 
        Z 
        , 
        X 
        ) 
       
     
    {\displaystyle s(Z,X)} 
   
 normal cone  to 
  
    
      
        Z 
        ↪ 
        X 
       
     
    {\displaystyle Z\hookrightarrow X} 
   
 
Relation to Chern classes for vector bundles [ edit ] For a holomorphic vector bundle  
  
    
      
        E 
       
     
    {\displaystyle E} 
   
 complex manifold  
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        s 
        ( 
        E 
        ) 
       
     
    {\displaystyle s(E)} 
   
 Chern class  
  
    
      
        c 
        ( 
        E 
        ) 
       
     
    {\displaystyle c(E)} 
   
 [ 3] 
Explicitly, for a total Chern class
  
    
      
        c 
        ( 
        E 
        ) 
        = 
        1 
        + 
        
          c 
          
            1 
           
         
        ( 
        E 
        ) 
        + 
        
          c 
          
            2 
           
         
        ( 
        E 
        ) 
        + 
        ⋯ 
         
     
    {\displaystyle c(E)=1+c_{1}(E)+c_{2}(E)+\cdots \,} 
   
 one gets the total Segre class
  
    
      
        s 
        ( 
        E 
        ) 
        = 
        1 
        + 
        
          s 
          
            1 
           
         
        ( 
        E 
        ) 
        + 
        
          s 
          
            2 
           
         
        ( 
        E 
        ) 
        + 
        ⋯ 
         
     
    {\displaystyle s(E)=1+s_{1}(E)+s_{2}(E)+\cdots \,} 
   
 where
  
    
      
        
          c 
          
            1 
           
         
        ( 
        E 
        ) 
        = 
        − 
        
          s 
          
            1 
           
         
        ( 
        E 
        ) 
        , 
        
          c 
          
            2 
           
         
        ( 
        E 
        ) 
        = 
        
          s 
          
            1 
           
         
        ( 
        E 
        
          ) 
          
            2 
           
         
        − 
        
          s 
          
            2 
           
         
        ( 
        E 
        ) 
        , 
        … 
        , 
        
          c 
          
            n 
           
         
        ( 
        E 
        ) 
        = 
        − 
        
          s 
          
            1 
           
         
        ( 
        E 
        ) 
        
          c 
          
            n 
            − 
            1 
           
         
        ( 
        E 
        ) 
        − 
        
          s 
          
            2 
           
         
        ( 
        E 
        ) 
        
          c 
          
            n 
            − 
            2 
           
         
        ( 
        E 
        ) 
        − 
        ⋯ 
        − 
        
          s 
          
            n 
           
         
        ( 
        E 
        ) 
       
     
    {\displaystyle c_{1}(E)=-s_{1}(E),\quad c_{2}(E)=s_{1}(E)^{2}-s_{2}(E),\quad \dots ,\quad c_{n}(E)=-s_{1}(E)c_{n-1}(E)-s_{2}(E)c_{n-2}(E)-\cdots -s_{n}(E)} 
   
 Let 
  
    
      
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            k 
           
         
       
     
    {\displaystyle x_{1},\dots ,x_{k}} 
   
 
  
    
      
        
          
            
              i 
              Ω 
             
            
              2 
              π 
             
           
         
       
     
    {\displaystyle {\frac {i\Omega }{2\pi }}} 
   
 
  
    
      
        Ω 
       
     
    {\displaystyle \Omega } 
   
 connection  on 
  
    
      
        E 
       
     
    {\displaystyle E} 
   
 
While the Chern class c(E) is written as
  
    
      
        c 
        ( 
        E 
        ) 
        = 
        
          ∏ 
          
            i 
            = 
            1 
           
          
            k 
           
         
        ( 
        1 
        + 
        
          x 
          
            i 
           
         
        ) 
        = 
        
          c 
          
            0 
           
         
        + 
        
          c 
          
            1 
           
         
        + 
        ⋯ 
        + 
        
          c 
          
            k 
           
         
         
     
    {\displaystyle c(E)=\prod _{i=1}^{k}(1+x_{i})=c_{0}+c_{1}+\cdots +c_{k}\,} 
   
 where 
  
    
      
        
          c 
          
            i 
           
         
       
     
    {\displaystyle c_{i}} 
   
 elementary symmetric polynomial  of degree 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
 
  
    
      
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            k 
           
         
       
     
    {\displaystyle x_{1},\dots ,x_{k}} 
   
 
the Segre for the dual bundle  
  
    
      
        
          E 
          
            ∨ 
           
         
       
     
    {\displaystyle E^{\vee }} 
   
 
  
    
      
        − 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        − 
        
          x 
          
            k 
           
         
       
     
    {\displaystyle -x_{1},\dots ,-x_{k}} 
   
 
  
    
      
        s 
        ( 
        
          E 
          
            ∨ 
           
         
        ) 
        = 
        
          ∏ 
          
            i 
            = 
            1 
           
          
            k 
           
         
        
          
            1 
            
              1 
              − 
              
                x 
                
                  i 
                 
               
             
           
         
        = 
        
          s 
          
            0 
           
         
        + 
        
          s 
          
            1 
           
         
        + 
        ⋯ 
       
     
    {\displaystyle s(E^{\vee })=\prod _{i=1}^{k}{\frac {1}{1-x_{i}}}=s_{0}+s_{1}+\cdots } 
   
 Expanding the above expression in powers of 
  
    
      
        
          x 
          
            1 
           
         
        , 
        … 
        
          x 
          
            k 
           
         
       
     
    {\displaystyle x_{1},\dots x_{k}} 
   
 
  
    
      
        
          s 
          
            i 
           
         
        ( 
        
          E 
          
            ∨ 
           
         
        ) 
       
     
    {\displaystyle s_{i}(E^{\vee })} 
   
 complete homogeneous symmetric polynomial  of 
  
    
      
        
          x 
          
            1 
           
         
        , 
        … 
        
          x 
          
            k 
           
         
       
     
    {\displaystyle x_{1},\dots x_{k}} 
   
 
Here are some basic properties.
For any cone C  (e.g., a vector bundle), 
  
    
      
        s 
        ( 
        C 
        ⊕ 
        1 
        ) 
        = 
        s 
        ( 
        C 
        ) 
       
     
    {\displaystyle s(C\oplus 1)=s(C)} 
   
 [ 4]  
For a cone C  and a vector bundle E ,
  
    
      
        c 
        ( 
        E 
        ) 
        s 
        ( 
        C 
        ⊕ 
        E 
        ) 
        = 
        s 
        ( 
        C 
        ) 
        . 
       
     
    {\displaystyle c(E)s(C\oplus E)=s(C).} 
   
 [ 5]  
If E  is a vector bundle, then[ 6] 
  
    
      
        
          s 
          
            i 
           
         
        ( 
        E 
        ) 
        = 
        0 
       
     
    {\displaystyle s_{i}(E)=0} 
   
 
  
    
      
        i 
        < 
        0 
       
     
    {\displaystyle i<0} 
   
 
  
    
      
        
          s 
          
            0 
           
         
        ( 
        E 
        ) 
       
     
    {\displaystyle s_{0}(E)} 
   
 
  
    
      
        
          s 
          
            i 
           
         
        ( 
        E 
        ) 
        ∘ 
        
          s 
          
            j 
           
         
        ( 
        F 
        ) 
        = 
        
          s 
          
            j 
           
         
        ( 
        F 
        ) 
        ∘ 
        
          s 
          
            i 
           
         
        ( 
        E 
        ) 
       
     
    {\displaystyle s_{i}(E)\circ s_{j}(F)=s_{j}(F)\circ s_{i}(E)} 
   
 F . 
If L  is a line bundle, then 
  
    
      
        
          s 
          
            1 
           
         
        ( 
        L 
        ) 
        = 
        − 
        
          c 
          
            1 
           
         
        ( 
        L 
        ) 
       
     
    {\displaystyle s_{1}(L)=-c_{1}(L)} 
   
 L .[ 6]  
If E  is a vector bundle of rank 
  
    
      
        e 
        + 
        1 
       
     
    {\displaystyle e+1} 
   
 L ,
  
    
      
        
          s 
          
            p 
           
         
        ( 
        E 
        ⊗ 
        L 
        ) 
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
           
         
        ( 
        − 
        1 
        
          ) 
          
            p 
            − 
            i 
           
         
        
          
            
              ( 
             
            
              
                e 
                + 
                p 
               
              
                e 
                + 
                i 
               
             
            
              ) 
             
           
         
        
          s 
          
            i 
           
         
        ( 
        E 
        ) 
        
          c 
          
            1 
           
         
        ( 
        L 
        
          ) 
          
            p 
            − 
            i 
           
         
        . 
       
     
    {\displaystyle s_{p}(E\otimes L)=\sum _{i=0}^{p}(-1)^{p-i}{\binom {e+p}{e+i}}s_{i}(E)c_{1}(L)^{p-i}.} 
   
 [ 7]  A key property of a Segre class is birational invariance: this is contained in the following. Let 
  
    
      
        p 
        : 
        X 
        → 
        Y 
       
     
    {\displaystyle p:X\to Y} 
   
 proper morphism  between algebraic schemes  such that 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\displaystyle Y} 
   
 
  
    
      
        W 
        ⊂ 
        Y 
       
     
    {\displaystyle W\subset Y} 
   
 
  
    
      
        V 
        = 
        
          p 
          
            − 
            1 
           
         
        ( 
        W 
        ) 
       
     
    {\displaystyle V=p^{-1}(W)} 
   
 
  
    
      
        
          p 
          
            V 
           
         
        : 
        V 
        → 
        W 
       
     
    {\displaystyle p_{V}:V\to W} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        
          
            
              p 
              
                V 
               
             
           
          
            ∗ 
           
         
        ( 
        s 
        ( 
        V 
        , 
        X 
        ) 
        ) 
        = 
        deg 
         
        ( 
        p 
        ) 
        s 
        ( 
        W 
        , 
        Y 
        ) 
        . 
       
     
    {\displaystyle {p_{V}}_{*}(s(V,X))=\operatorname {deg} (p)\,s(W,Y).} 
   
 [ 8] Similarly, if 
  
    
      
        f 
        : 
        X 
        → 
        Y 
       
     
    {\displaystyle f:X\to Y} 
   
 flat morphism  of constant relative dimension between pure-dimensional algebraic schemes, then, for each closed subscheme 
  
    
      
        W 
        ⊂ 
        Y 
       
     
    {\displaystyle W\subset Y} 
   
 
  
    
      
        V 
        = 
        
          f 
          
            − 
            1 
           
         
        ( 
        W 
        ) 
       
     
    {\displaystyle V=f^{-1}(W)} 
   
 
  
    
      
        
          f 
          
            V 
           
         
        : 
        V 
        → 
        W 
       
     
    {\displaystyle f_{V}:V\to W} 
   
 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
 
  
    
      
        
          
            
              f 
              
                V 
               
             
           
          
            ∗ 
           
         
        ( 
        s 
        ( 
        W 
        , 
        Y 
        ) 
        ) 
        = 
        s 
        ( 
        V 
        , 
        X 
        ) 
        . 
       
     
    {\displaystyle {f_{V}}^{*}(s(W,Y))=s(V,X).} 
   
 [ 9] A basic example of birational invariance is provided by a blow-up. Let 
  
    
      
        π 
        : 
        
          
            
              X 
              ~ 
             
           
         
        → 
        X 
       
     
    {\displaystyle \pi :{\widetilde {X}}\to X} 
   
 Z . Since the exceptional divisor  
  
    
      
        E 
        := 
        
          π 
          
            − 
            1 
           
         
        ( 
        Z 
        ) 
        ↪ 
        
          
            
              X 
              ~ 
             
           
         
       
     
    {\displaystyle E:=\pi ^{-1}(Z)\hookrightarrow {\widetilde {X}}} 
   
 
  
    
      
        
          
            
              O 
             
           
          
            E 
           
         
        ( 
        E 
        ) 
        := 
        
          
            
              O 
             
           
          
            X 
           
         
        ( 
        E 
        ) 
        
          
            | 
           
          
            E 
           
         
       
     
    {\displaystyle {\mathcal {O}}_{E}(E):={\mathcal {O}}_{X}(E)|_{E}} 
   
 
  
    
      
        
          
            
              
                s 
                ( 
                E 
                , 
                
                  
                    
                      X 
                      ~ 
                     
                   
                 
                ) 
               
              
                = 
                c 
                ( 
                
                  
                    
                      O 
                     
                   
                  
                    E 
                   
                 
                ( 
                E 
                ) 
                
                  ) 
                  
                    − 
                    1 
                   
                 
                [ 
                E 
                ] 
               
             
            
              
                = 
                [ 
                E 
                ] 
                − 
                E 
                ⋅ 
                [ 
                E 
                ] 
                + 
                E 
                ⋅ 
                ( 
                E 
                ⋅ 
                [ 
                E 
                ] 
                ) 
                + 
                ⋯ 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}s(E,{\widetilde {X}})&=c({\mathcal {O}}_{E}(E))^{-1}[E]\\&=[E]-E\cdot [E]+E\cdot (E\cdot [E])+\cdots ,\end{aligned}}} 
   
 where we used the notation 
  
    
      
        D 
        ⋅ 
        α 
        = 
        
          c 
          
            1 
           
         
        ( 
        
          
            O 
           
         
        ( 
        D 
        ) 
        ) 
        α 
       
     
    {\displaystyle D\cdot \alpha =c_{1}({\mathcal {O}}(D))\alpha } 
   
 [ 10] 
  
    
      
        s 
        ( 
        Z 
        , 
        X 
        ) 
        = 
        
          g 
          
            ∗ 
           
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            ( 
            − 
            1 
            
              ) 
              
                k 
                − 
                1 
               
             
            
              E 
              
                k 
               
             
           
          ) 
         
       
     
    {\displaystyle s(Z,X)=g_{*}\left(\sum _{k=1}^{\infty }(-1)^{k-1}E^{k}\right)} 
   
 where 
  
    
      
        g 
        : 
        E 
        = 
        
          π 
          
            − 
            1 
           
         
        ( 
        Z 
        ) 
        → 
        Z 
       
     
    {\displaystyle g:E=\pi ^{-1}(Z)\to Z} 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
 
Let Z  be a smooth curve that is a complete intersection of effective Cartier divisors 
  
    
      
        
          D 
          
            1 
           
         
        , 
        … 
        , 
        
          D 
          
            n 
           
         
       
     
    {\displaystyle D_{1},\dots ,D_{n}} 
   
 X . Assume the dimension of X  is n  + 1. Then the Segre class of the normal cone  
  
    
      
        
          C 
          
            Z 
            
              / 
             
            X 
           
         
       
     
    {\displaystyle C_{Z/X}} 
   
 
  
    
      
        Z 
        ↪ 
        X 
       
     
    {\displaystyle Z\hookrightarrow X} 
   
 [ 11] 
  
    
      
        s 
        ( 
        
          C 
          
            Z 
            
              / 
             
            X 
           
         
        ) 
        = 
        [ 
        Z 
        ] 
        − 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          D 
          
            i 
           
         
        ⋅ 
        [ 
        Z 
        ] 
        . 
       
     
    {\displaystyle s(C_{Z/X})=[Z]-\sum _{i=1}^{n}D_{i}\cdot [Z].} 
   
 Indeed, for example, if Z  is regularly embedded into X , then, since 
  
    
      
        
          C 
          
            Z 
            
              / 
             
            X 
           
         
        = 
        
          N 
          
            Z 
            
              / 
             
            X 
           
         
       
     
    {\displaystyle C_{Z/X}=N_{Z/X}} 
   
 
  
    
      
        
          N 
          
            Z 
            
              / 
             
            X 
           
         
        = 
        
          ⨁ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          N 
          
            
              D 
              
                i 
               
             
            
              / 
             
            X 
           
         
        
          
            | 
           
          
            Z 
           
         
       
     
    {\displaystyle N_{Z/X}=\bigoplus _{i=1}^{n}N_{D_{i}/X}|_{Z}} 
   
 Normal cone#Properties ), we have:
  
    
      
        s 
        ( 
        
          C 
          
            Z 
            
              / 
             
            X 
           
         
        ) 
        = 
        c 
        ( 
        
          N 
          
            Z 
            
              / 
             
            X 
           
         
        
          ) 
          
            − 
            1 
           
         
        [ 
        Z 
        ] 
        = 
        
          ∏ 
          
            i 
            = 
            1 
           
          
            d 
           
         
        ( 
        1 
        − 
        
          c 
          
            1 
           
         
        ( 
        
          
            
              O 
             
           
          
            X 
           
         
        ( 
        
          D 
          
            i 
           
         
        ) 
        ) 
        ) 
        [ 
        Z 
        ] 
        = 
        [ 
        Z 
        ] 
        − 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          D 
          
            i 
           
         
        ⋅ 
        [ 
        Z 
        ] 
        . 
       
     
    {\displaystyle s(C_{Z/X})=c(N_{Z/X})^{-1}[Z]=\prod _{i=1}^{d}(1-c_{1}({\mathcal {O}}_{X}(D_{i})))[Z]=[Z]-\sum _{i=1}^{n}D_{i}\cdot [Z].} 
   
 The following is Example 3.2.22. of Fulton (1998).[ 2] enumerative geometry .
Viewing the dual projective space 
  
    
      
        
          
            
              
                
                  P 
                 
                
                  3 
                 
               
              ˘ 
             
           
         
       
     
    {\displaystyle {\breve {\mathbb {P} ^{3}}}} 
   
 Grassmann bundle  
  
    
      
        p 
        : 
        
          
            
              
                
                  P 
                 
                
                  3 
                 
               
              ˘ 
             
           
         
        → 
        ∗ 
       
     
    {\displaystyle p:{\breve {\mathbb {P} ^{3}}}\to *} 
   
 
  
    
      
        
          
            P 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbb {P} ^{3}} 
   
 
  
    
      
        0 
        → 
        S 
        → 
        
          p 
          
            ∗ 
           
         
        
          
            C 
           
          
            3 
           
         
        → 
        Q 
        → 
        0 
       
     
    {\displaystyle 0\to S\to p^{*}\mathbb {C} ^{3}\to Q\to 0} 
   
 where 
  
    
      
        S 
        , 
        Q 
       
     
    {\displaystyle S,Q} 
   
 
  
    
      
        E 
        = 
        
          Sym 
          
            2 
           
         
         
        ( 
        
          S 
          
            ∗ 
           
         
        ⊗ 
        
          Q 
          
            ∗ 
           
         
        ) 
       
     
    {\displaystyle E=\operatorname {Sym} ^{2}(S^{*}\otimes Q^{*})} 
   
 projective bundle  
  
    
      
        q 
        : 
        X 
        = 
        
          P 
         
        ( 
        E 
        ) 
        → 
        
          
            
              
                
                  P 
                 
                
                  3 
                 
               
              ˘ 
             
           
         
       
     
    {\displaystyle q:X=\mathbb {P} (E)\to {\breve {\mathbb {P} ^{3}}}} 
   
 
  
    
      
        
          
            P 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbb {P} ^{3}} 
   
 
  
    
      
        β 
        = 
        
          c 
          
            1 
           
         
        ( 
        
          Q 
          
            ∗ 
           
         
        ) 
       
     
    {\displaystyle \beta =c_{1}(Q^{*})} 
   
 
  
    
      
        c 
        ( 
        
          S 
          
            ∗ 
           
         
        ⊗ 
        
          Q 
          
            ∗ 
           
         
        ) 
        = 
        2 
        β 
        + 
        2 
        
          β 
          
            2 
           
         
       
     
    {\displaystyle c(S^{*}\otimes Q^{*})=2\beta +2\beta ^{2}} 
   
 Chern class#Computation formulae ,
  
    
      
        c 
        ( 
        E 
        ) 
        = 
        1 
        + 
        8 
        β 
        + 
        30 
        
          β 
          
            2 
           
         
        + 
        60 
        
          β 
          
            3 
           
         
       
     
    {\displaystyle c(E)=1+8\beta +30\beta ^{2}+60\beta ^{3}} 
   
 and thus
  
    
      
        s 
        ( 
        E 
        ) 
        = 
        1 
        + 
        8 
        h 
        + 
        34 
        
          h 
          
            2 
           
         
        + 
        92 
        
          h 
          
            3 
           
         
       
     
    {\displaystyle s(E)=1+8h+34h^{2}+92h^{3}} 
   
 where 
  
    
      
        h 
        = 
        − 
        β 
        = 
        
          c 
          
            1 
           
         
        ( 
        Q 
        ) 
        . 
       
     
    {\displaystyle h=-\beta =c_{1}(Q).} 
   
 
  
    
      
        s 
        ( 
        E 
        ) 
       
     
    {\displaystyle s(E)} 
   
 
Let X  be a surface and 
  
    
      
        A 
        , 
        B 
        , 
        D 
       
     
    {\displaystyle A,B,D} 
   
 
  
    
      
        Z 
        ⊂ 
        X 
       
     
    {\displaystyle Z\subset X} 
   
 scheme-theoretic intersection  of 
  
    
      
        A 
        + 
        D 
       
     
    {\displaystyle A+D} 
   
 
  
    
      
        B 
        + 
        D 
       
     
    {\displaystyle B+D} 
   
 
  
    
      
        A 
        , 
        B 
       
     
    {\displaystyle A,B} 
   
 P  with the same multiplicity m  and that P  is a smooth point of X . Then[ 12] 
  
    
      
        s 
        ( 
        Z 
        , 
        X 
        ) 
        = 
        [ 
        D 
        ] 
        + 
        ( 
        
          m 
          
            2 
           
         
        [ 
        P 
        ] 
        − 
        D 
        ⋅ 
        [ 
        D 
        ] 
        ) 
        . 
       
     
    {\displaystyle s(Z,X)=[D]+(m^{2}[P]-D\cdot [D]).} 
   
 To see this, consider the blow-up 
  
    
      
        π 
        : 
        
          
            
              X 
              ~ 
             
           
         
        → 
        X 
       
     
    {\displaystyle \pi :{\widetilde {X}}\to X} 
   
 X  along P  and let 
  
    
      
        g 
        : 
        
          
            
              Z 
              ~ 
             
           
         
        = 
        
          π 
          
            − 
            1 
           
         
        Z 
        → 
        Z 
       
     
    {\displaystyle g:{\widetilde {Z}}=\pi ^{-1}Z\to Z} 
   
 Z . By the formula at #Properties ,
  
    
      
        s 
        ( 
        Z 
        , 
        X 
        ) 
        = 
        
          g 
          
            ∗ 
           
         
        ( 
        [ 
        
          
            
              Z 
              ~ 
             
           
         
        ] 
        ) 
        − 
        
          g 
          
            ∗ 
           
         
        ( 
        
          
            
              Z 
              ~ 
             
           
         
        ⋅ 
        [ 
        
          
            
              Z 
              ~ 
             
           
         
        ] 
        ) 
        . 
       
     
    {\displaystyle s(Z,X)=g_{*}([{\widetilde {Z}}])-g_{*}({\widetilde {Z}}\cdot [{\widetilde {Z}}]).} 
   
 Since 
  
    
      
        
          
            
              Z 
              ~ 
             
           
         
        = 
        
          π 
          
            ∗ 
           
         
        D 
        + 
        m 
        E 
       
     
    {\displaystyle {\widetilde {Z}}=\pi ^{*}D+mE} 
   
 
  
    
      
        E 
        = 
        
          π 
          
            − 
            1 
           
         
        P 
       
     
    {\displaystyle E=\pi ^{-1}P} 
   
 
Multiplicity along a subvariety [ edit ] Let 
  
    
      
        ( 
        A 
        , 
        
          
            m 
           
         
        ) 
       
     
    {\displaystyle (A,{\mathfrak {m}})} 
   
 X  at a closed subvariety V  codimension n  (for example, V  can be a closed point). Then 
  
    
      
        
          length 
          
            A 
           
         
         
        ( 
        A 
        
          / 
         
        
          
            
              m 
             
           
          
            t 
           
         
        ) 
       
     
    {\displaystyle \operatorname {length} _{A}(A/{\mathfrak {m}}^{t})} 
   
 n  in t  for large t ; i.e., it can be written as 
  
    
      
        
          
            
              e 
              ( 
              A 
              
                ) 
                
                  n 
                 
               
             
            
              n 
              ! 
             
           
         
        
          t 
          
            n 
           
         
        + 
       
     
    {\displaystyle {e(A)^{n} \over n!}t^{n}+} 
   
 
  
    
      
        e 
        ( 
        A 
        ) 
       
     
    {\displaystyle e(A)} 
   
 multiplicity  of A .
The Segre class 
  
    
      
        s 
        ( 
        V 
        , 
        X 
        ) 
       
     
    {\displaystyle s(V,X)} 
   
 
  
    
      
        V 
        ⊂ 
        X 
       
     
    {\displaystyle V\subset X} 
   
 
  
    
      
        [ 
        V 
        ] 
       
     
    {\displaystyle [V]} 
   
 
  
    
      
        s 
        ( 
        V 
        , 
        X 
        ) 
       
     
    {\displaystyle s(V,X)} 
   
 
  
    
      
        e 
        ( 
        A 
        ) 
       
     
    {\displaystyle e(A)} 
   
 [ 13] 
^ Segre 1953 ^ a b   Fulton 1998 ^ Fulton 1998 , p.50.^ Fulton 1998 , Example 4.1.1.^ 
Fulton 1998 , Example 4.1.5. 
^ a b   Fulton 1998 , Proposition 3.1.^ Fulton 1998 , Example 3.1.1.^ Fulton 1998 , Proposition 4.2. (a)^ Fulton 1998 , Proposition 4.2. (b)^ Fulton 1998 , § 2.5.^ Fulton 1998 , Example 9.1.1.^ Fulton 1998 , Example 4.2.2.^ Fulton 1998 , Example 4.3.1.  
Fulton, William (1998), Intersection theory , Ergebnisse der Mathematik und ihrer Grenzgebiete . 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag , ISBN  978-3-540-62046-4 MR  1644323  Segre, Beniamino  (1953), "Nuovi metodi e resultati nella geometria sulle varietà algebriche", Ann. Mat. Pura Appl.  (in Italian), 35  (4): 1– 127, MR  0061420