SETDB1
Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene.[5][6] SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.
Function
[edit]The human SETDB1 protein consists of multiple N-terminal and C-terminal functional domains linked by an intervening sequence of variable length, which can exist in multiple isoforms generated by alternative splicing.[7]
The chief functional domain is the SET domain, a highly conserved, approximately 150-amino acid motif positioned near SETDB1's C-terminus and implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3–9 and Enhancer of zeste proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[6] In SETDB1, the SET domain is bifurcated into two non-contiguous subdomains.
The SET domain functions as an H3K9-specific methyltransferase which exclusively methylates histone H3 lysine 9 (H3K9) by catalyzing the covalent attachment of a methyl group (—CH
3) to this particular lysine's electrophilic side chain. It is capable of adding to unmethylated H3K9 to convert it to the monomethylated state (H3K9me1), but its primary substrates are the mono- and dimethylated forms, which it converts to dimethylated (H3K9me2) and trimethylated (H3K9me3) states, respectively.[7] H3K9 methylation is a classic epigenetic mark that recruits heterochromatin protein 1 (HP1) to the marked nucleosome, which then induces the condensation of the nucleosome into repressive heterochromatin, making nearby DNA sequences less accessible to transcriptional machinery and hence downregulating the expression of nearby genes. Thus SETDB1 is a core functional enzyme in repressive pathways that control gene expression by the post-translational modification of H3K9. A specific residue within the SET domain, lysine 867 (K867), is monoubiquitinated by the protein ATF7IP. This modification helps retain SETDB1 in the nucleus, prevents its degradation by proteasomes, and is necessary for SETDB1 to have methyltransferase activity.
In the N-terminal region, the SETDB1 protein also contains a methyl CpG-binding domain (MBD) capable of recognizing CpG-rich genomic DNA and interacting with DNA methyltransferases. Two consecutive Tudor domains help target SETDB1 specifically to H3K9 by functioning as anchors to either side of the K9 residue in the N-terminal tail of histone H3.[7]
Interactions
[edit]In mammals, SETDB1 has been shown to interact with the mediator protein TRIM28[8] and various DNA-binding KRAB domain-containing transcription factors, forming a protein complex that is responsible for much of the repressive modification of H3K9 throughout the genome. TRIM28 effectively links SETDB1's methyltransferase activity to the KRAB domain's ability to bind DNA at specific sequences, allowing the selective modification of H3K9 at sequence-specific loci.
During meiosis, synapsis of homologous chromosomes ensures correct homologous chromosome segregation. Asynapsed homologs are transcriptionally inactivated by a process of meiotic silencing.[9] Meiotic silencing depends on the DNA damage response network.[9] SETDB1 has been identified as the bridge linking the DNA damage response to chromosome silencing in male mice.[9]
See also
[edit]- SETD1A, a protein that is highly homologous to SETDB1
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000143379 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000015697 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Harte PJ, Wu W, Carrasquillo MM, Matera AG (June 1999). "Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids". Cytogenet. Cell Genet. 84 (1–2): 83–6. doi:10.1159/000015220. PMID 10343109. S2CID 10805552.
- ^ a b "Entrez Gene: SETDB1 SET domain, bifurcated 1".
- ^ a b c Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C. (February 1, 2021). "Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential". Cancer Research. 81 (3): 525–534. doi:10.1158/0008-5472.CAN-20-2906. PMID 33115801.
{{cite journal}}: CS1 maint: multiple names: authors list (link) - ^ Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (April 2002). "SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins". Genes Dev. 16 (8): 919–32. doi:10.1101/gad.973302. PMC 152359. PMID 11959841.
- ^ a b c Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JM (December 2018). "SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice". Dev Cell. 47 (5): 645–659.e6. doi:10.1016/j.devcel.2018.10.004. PMC 6286383. PMID 30393076.
Further reading
[edit]- Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, Seki N, Kawarabayasi Y, Ishikawa K, Tabata S (1994). "Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1". DNA Res. 1 (5): 223–9. doi:10.1093/dnares/1.5.223. PMID 7584044.
- Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y (2002). "Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor". Oncogene. 21 (1): 148–52. doi:10.1038/sj.onc.1204998. PMID 11791185. S2CID 10912876.
- Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (2002). "SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins". Genes Dev. 16 (8): 919–32. doi:10.1101/gad.973302. PMC 152359. PMID 11959841.
- Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ, Chansky HA (2003). "An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B". Biochem. J. 369 (Pt 3): 651–7. doi:10.1042/BJ20020854. PMC 1223118. PMID 12398767.
- Nakayama M, Kikuno R, Ohara O (2002). "Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs". Genome Res. 12 (11): 1773–84. doi:10.1101/gr.406902. PMC 187542. PMID 12421765.
- Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ (2003). "Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation". Genes Dev. 17 (15): 1855–69. doi:10.1101/gad.1102803. PMC 196232. PMID 12869583.
- Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003). "mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression". Mol. Cell. 12 (2): 475–87. doi:10.1016/j.molcel.2003.08.007. PMID 14536086.
- Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier MF (2004). "The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins". Biochem. J. 378 (Pt 2): 353–62. doi:10.1042/BJ20030786. PMC 1223961. PMID 14611647.
- Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (2004). "Functional proteomics mapping of a human signaling pathway". Genome Res. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748.
- Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Büssow K, Buessow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004). "A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease". Mol. Cell. 15 (6): 853–65. doi:10.1016/j.molcel.2004.09.016. PMID 15383276.
- Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Nakao M (2005). "Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins". J. Biol. Chem. 280 (14): 13928–35. doi:10.1074/jbc.M413654200. PMID 15691849.
- Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R (2005). "In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation". Mol. Cell. Biol. 25 (11): 4552–64. doi:10.1128/MCB.25.11.4552-4564.2005. PMC 1140641. PMID 15899859.
- Gevaert K, Staes A, Van Damme J, De Groot S, Hugelier K, Demol H, Martens L, Goethals M, Vandekerckhove J (2005). "Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC". Proteomics. 5 (14): 3589–99. doi:10.1002/pmic.200401217. PMID 16097034. S2CID 895879.
- Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl:11858/00-001M-0000-0010-8592-0. PMID 16169070. S2CID 8235923.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
- Orouji E, Federico A, Larribere L, Novak D, Lipka DB, Assenov Y, Sachindra S, Hueser L, Granados K, Gebhardt C, Plass C, Umansky V, Utikal J (2019). "Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target". Int J Cancer. 145 (12): 3462–3477. doi:10.1002/ijc.32432. PMID 31131878.
- Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C (2021). "Histone methyltransferase SETDB1: A common denominator of tumorigenesis with therapeutic potential". Cancer Research. 81 (3): 525–534. doi:10.1158/0008-5472.CAN-20-2906. PMID 33115801. S2CID 226046421.
- Cao N, Yu Y, Zhu H, Chen M, Chen P, Zhuo M, Ye M (2020). "SETDB1 promotes the progression of colorectal cancer via epigenetically silencing p21 expression". Cell Death & Disease. 11 (5) 351. doi:10.1038/s41419-020-2561-6. PMC 7214465. PMID 32393761.
- Lee S, Lee C, Hwang CY, Kim D, Han Y, Hong SN, Cho KH (2020). "Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells". Molecular Cancer Research. 18 (1): 118–129. doi:10.1158/1541-7786.MCR-19-0450. PMID 31896605.
- Fukuda K, Shinkai Y (2020). "SETDB1-Mediated silencing of retroelements". Viruses. 12 (6): 596. doi:10.3390/v12060596. PMC 7354471. PMID 32486217.
External links
[edit]- FactorBook SETDB1
- Overview of all the structural information available in the PDB for UniProt: Q15047 (Histone-lysine N-methyltransferase SETDB1) at the PDBe-KB.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.