From Wikipedia, the free encyclopedia
					 
					
In mathematics  and Fourier analysis , a rectangular mask short-time Fourier transform  (rec-STFT) is a simplified form of the short-time Fourier transform  which is used to analyze how a signal's frequency content changes over time. In rec-STFT, a rectangular window  (a simple on/off time-limiting function) is used to isolate short time segments of the signal. Other types of the STFT may require more computation time ( refers to the amount of time it takes a computer or algorithm to perform a calculation or complete a task) than the rec-STFT.
The rectangular mask function  can be defined for some bound (B)  over time (t ) as
  
    
      
        w 
        ( 
        t 
        ) 
        = 
        
          
            { 
            
              
                
                    
                  1 
                  ; 
                 
                
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  ≤ 
                  B 
                 
               
              
                
                    
                  0 
                  ; 
                 
                
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  > 
                  B 
                 
               
             
             
         
       
     
    {\displaystyle w(t)={\begin{cases}\ 1;&|t|\leq B\\\ 0;&|t|>B\end{cases}}} 
   
 B  = 50, x -axis (sec)We can change B  for different tradeoffs  between desired time resolution and frequency resolution.
Rec-STFT
  
    
      
        X 
        ( 
        t 
        , 
        f 
        ) 
        = 
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        x 
        ( 
        τ 
        ) 
        
          e 
          
            − 
            j 
            2 
            π 
            f 
            τ 
           
         
        d 
        τ 
       
     
    {\displaystyle X(t,f)=\int _{t-B}^{t+B}x(\tau )e^{-j2\pi f\tau }\,d\tau } 
   
 Inverse form
  
    
      
        x 
        ( 
        t 
        ) 
        = 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        X 
        ( 
        
          t 
          
            1 
           
         
        , 
        f 
        ) 
        
          e 
          
            j 
            2 
            π 
            f 
            t 
           
         
        d 
        f 
        
           where  
         
        t 
        − 
        B 
        < 
        
          t 
          
            1 
           
         
        < 
        t 
        + 
        B 
       
     
    {\displaystyle x(t)=\int _{-\infty }^{\infty }X(t_{1},f)e^{j2\pi ft}\,df{\text{ where }}t-B<t_{1}<t+B} 
   
 Rec-STFT has similar properties with Fourier transform 
(a)
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        d 
        f 
        = 
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        x 
        ( 
        τ 
        ) 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            j 
            2 
            π 
            f 
            τ 
           
         
        d 
        f 
        d 
        τ 
        = 
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        x 
        ( 
        τ 
        ) 
        δ 
        ( 
        τ 
        ) 
        d 
        τ 
        = 
        
          
            { 
            
              
                
                    
                  x 
                  ( 
                  0 
                  ) 
                  ; 
                 
                
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  < 
                  B 
                 
               
              
                
                    
                  0 
                  ; 
                 
                
                  
                    otherwise 
                   
                 
               
             
             
         
       
     
    {\displaystyle \int _{-\infty }^{\infty }X(t,f)\,df=\int _{t-B}^{t+B}x(\tau )\int _{-\infty }^{\infty }e^{-j2\pi f\tau }\,df\,d\tau =\int _{t-B}^{t+B}x(\tau )\delta (\tau )\,d\tau ={\begin{cases}\ x(0);&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}} 
   
 (b)
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        
          e 
          
            − 
            j 
            2 
            π 
            f 
            v 
           
         
        d 
        f 
        = 
        
          
            { 
            
              
                
                    
                  x 
                  ( 
                  v 
                  ) 
                  ; 
                 
                
                  v 
                  − 
                  B 
                  < 
                  t 
                  < 
                  v 
                  + 
                  B 
                 
               
              
                
                    
                  0 
                  ; 
                 
                
                  
                    otherwise 
                   
                 
               
             
             
         
       
     
    {\displaystyle \int _{-\infty }^{\infty }X(t,f)e^{-j2\pi fv}\,df={\begin{cases}\ x(v);&v-B<t<v+B\\\ 0;&{\text{otherwise}}\end{cases}}} 
   
 Shifting property (shift along x-axis) 
  
    
      
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        x 
        ( 
        τ 
        + 
        
          τ 
          
            0 
           
         
        ) 
        
          e 
          
            − 
            j 
            2 
            π 
            f 
            τ 
           
         
        d 
        τ 
        = 
        X 
        ( 
        t 
        + 
        
          τ 
          
            0 
           
         
        , 
        f 
        ) 
        
          e 
          
            j 
            2 
            π 
            f 
            
              τ 
              
                0 
               
             
           
         
       
     
    {\displaystyle \int _{t-B}^{t+B}x(\tau +\tau _{0})e^{-j2\pi f\tau }\,d\tau =X(t+\tau _{0},f)e^{j2\pi f\tau _{0}}} 
   
 Modulation property (shift along y -axis) 
  
    
      
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        [ 
        x 
        ( 
        τ 
        ) 
        
          e 
          
            j 
            2 
            π 
            
              f 
              
                0 
               
             
            τ 
           
         
        ] 
        d 
        τ 
        = 
        X 
        ( 
        t 
        , 
        f 
        − 
        
          f 
          
            0 
           
         
        ) 
       
     
    {\displaystyle \int _{t-B}^{t+B}[x(\tau )e^{j2\pi f_{0}\tau }]d\tau =X(t,f-f_{0})} 
   
 When 
  
    
      
        x 
        ( 
        t 
        ) 
        = 
        δ 
        ( 
        t 
        ) 
        , 
        X 
        ( 
        t 
        , 
        f 
        ) 
        = 
        
          
            { 
            
              
                
                    
                  1 
                  ; 
                 
                
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  < 
                  B 
                 
               
              
                
                    
                  0 
                  ; 
                 
                
                  
                    otherwise 
                   
                 
               
             
             
         
       
     
    {\displaystyle x(t)=\delta (t),X(t,f)={\begin{cases}\ 1;&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}} 
   
  
When 
  
    
      
        x 
        ( 
        t 
        ) 
        = 
        1 
        , 
        X 
        ( 
        t 
        , 
        f 
        ) 
        = 
        2 
        B 
        sinc 
         
        ( 
        2 
        B 
        f 
        ) 
        
          e 
          
            j 
            2 
            π 
            f 
            t 
           
         
       
     
    {\displaystyle x(t)=1,X(t,f)=2B\operatorname {sinc} (2Bf)e^{j2\pi ft}} 
   
  If 
  
    
      
        h 
        ( 
        t 
        ) 
        = 
        α 
        x 
        ( 
        t 
        ) 
        + 
        β 
        y 
        ( 
        t 
        ) 
         
     
    {\displaystyle h(t)=\alpha x(t)+\beta y(t)\,} 
   
 
  
    
      
        H 
        ( 
        t 
        , 
        f 
        ) 
        , 
        X 
        ( 
        t 
        , 
        f 
        ) 
        , 
       
     
    {\displaystyle H(t,f),X(t,f),} 
   
 
  
    
      
        Y 
        ( 
        t 
        , 
        f 
        ) 
         
     
    {\displaystyle Y(t,f)\,} 
   
 
  
    
      
        H 
        ( 
        t 
        , 
        f 
        ) 
        = 
        α 
        X 
        ( 
        t 
        , 
        f 
        ) 
        + 
        β 
        Y 
        ( 
        t 
        , 
        f 
        ) 
        . 
       
     
    {\displaystyle H(t,f)=\alpha X(t,f)+\beta Y(t,f).} 
   
 Power integration property 
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          | 
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        
          
            | 
           
          
            2 
           
         
        d 
        f 
        = 
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        
          | 
         
        x 
        ( 
        τ 
        ) 
        
          
            | 
           
          
            2 
           
         
        d 
        τ 
       
     
    {\displaystyle \int _{-\infty }^{\infty }|X(t,f)|^{2}\,df=\int _{t-B}^{t+B}|x(\tau )|^{2}\,d\tau } 
   
 
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          | 
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        
          
            | 
           
          
            2 
           
         
        d 
        f 
        d 
        t 
        = 
        2 
        B 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          | 
         
        x 
        ( 
        τ 
        ) 
        
          
            | 
           
          
            2 
           
         
        d 
        τ 
       
     
    {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|X(t,f)|^{2}\,df\,dt=2B\int _{-\infty }^{\infty }|x(\tau )|^{2}\,d\tau } 
   
 
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        
          Y 
          
            ∗ 
           
         
        ( 
        t 
        , 
        f 
        ) 
        d 
        f 
        = 
        
          ∫ 
          
            t 
            − 
            B 
           
          
            t 
            + 
            B 
           
         
        x 
        ( 
        τ 
        ) 
        
          y 
          
            ∗ 
           
         
        ( 
        τ 
        ) 
        d 
        τ 
       
     
    {\displaystyle \int _{-\infty }^{\infty }X(t,f)Y^{*}(t,f)\,df=\int _{t-B}^{t+B}x(\tau )y^{*}(\tau )\,d\tau } 
   
 
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        X 
        ( 
        t 
        , 
        f 
        ) 
        
          Y 
          
            ∗ 
           
         
        ( 
        t 
        , 
        f 
        ) 
        d 
        f 
        d 
        t 
        = 
        2 
        B 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        x 
        ( 
        τ 
        ) 
        
          y 
          
            ∗ 
           
         
        ( 
        τ 
        ) 
        d 
        τ 
       
     
    {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }X(t,f)Y^{*}(t,f)\,df\,dt=2B\int _{-\infty }^{\infty }x(\tau )y^{*}(\tau )\,d\tau } 
   
 Example of tradeoff with different B [ edit ] Spectrograms  produced from applying a rec-STFT on a function consisting of 3 consecutive cosine waves. (top spectrogram uses smaller B of 0.5, middle uses B of 1, and bottom uses larger B of 2.)From the image, when B  is smaller, the time resolution is better. Otherwise, when B  is larger, the frequency resolution is better.
Advantage and disadvantage [ edit ] Compared with the Fourier transform:
Advantage:  The instantaneous frequency can be observed.Disadvantage:  Higher complexity of computation.Compared with other types of time-frequency analysis :
Advantage:  Least computation time for digital implementation.Disadvantage:  Quality is worse than other types of time-frequency analysis. The jump discontinuity  of the edges of the rectangular mask results in Gibbs ringing artifacts  in the frequency domain, which can be alleviated with smoother windows .Jian-Jiun Ding (2014) Time-frequency analysis and wavelet transform