Přeskočit na obsah

Polospojitá funkce

Z Wikipedie, otevřené encyklopedie

Přesněji funkce polospojitá shora a funkce polospojitá zdola jsou pojmy používané v matematické analýze. Jsou to vlastnosti reálných funkcí, které jsou slabší než spojitost, nicméně dány dohromady již spojitost implikují. Každá z nich je tedy sama o sobě jen „půl spojitosti“. Funkce je shora polospojitá v bodě , pokud pro body blízké bodu není o moc větší než . Funkce je zdola polospojitá v bodě , pokud pro body blízké bodu není o moc menší než .

Shora polospojitá funkce.
  • Funkce , kde je topologický prostor, je shora polospojitá v bodě , pokud pro každé dostatečně malé existuje okolí bodu tak, že pro každé platí .
  • Funkce je shora polospojitá v , jestliže je shora polospojitá v každém bodě . Je to právě tehdy, když jsou všechny množiny tvaru otevřené.

Ekvivalentně můžeme říci, že je shora polospojitá v bodě , pokud .

Zdola polospojitá funkce.
  • Funkce , kde je topologický prostor, je zdola polospojitá v bodě , pokud pro každé existuje okolí bodu tak, že pro každé platí .
  • Funkce je zdola polospojitá v , jestliže je zdola polospojitá v každém bodě . Je to právě tehdy, když jsou všechny množiny tvaru otevřené.

Ekvivalentně můžeme říci, že je zdola polospojitá v bodě , pokud .

Vlastnosti

[editovat | editovat zdroj]
  • Nerovnost ukazuje, že pokud je v bodě polospojitá shora i zdola, je již v bodě spojitá.
  • Funkce , která je shora polospojitá na kompaktním prostoru , je již nutně shora omezená na a má na maximum.
  • Funkce , která je zdola polospojitá na kompaktním prostoru , je již nutně zdola omezená na a má na minimum.
  • Protože , je supremum libovolného systému zdola polospojitých funkcí opět zdola polospojité.
  • Protože , je infimum libovolného systému shora polospojitých funkcí opět zdola polospojité.
  • Naopak supremum shora polospojitých (nebo dokonce spojitých) funkcí nemusí být shora polospojité, jak ukazuje příklad .

Příklady

[editovat | editovat zdroj]
  1. a b Stačí si uvědomit, že na hranici otevřené množiny je charakteristická funkce 0 a na hranici uzavřené 1.

Související články

[editovat | editovat zdroj]

Externí odkazy

[editovat | editovat zdroj]