Skew-symmetric 4 × 4 matrix, which characterizes a straight line in projective space
In mathematics , the Plücker matrix  is a special skew-symmetric  4 × 4 matrix , which characterizes a straight line in projective space . The matrix is defined by 6 Plücker coordinates  with 4 degrees of freedom . It is named after the German mathematician Julius Plücker .
A straight line in space is defined by two distinct points 
  
    
      
        A 
        = 
        
          
            ( 
            
              
                A 
                
                  0 
                 
               
              , 
              
                A 
                
                  1 
                 
               
              , 
              
                A 
                
                  2 
                 
               
              , 
              
                A 
                
                  3 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
       
     
    {\displaystyle A=\left(A_{0},A_{1},A_{2},A_{3}\right)^{\top }\in \mathbb {R} {\mathcal {P}}^{3}} 
   
 
  
    
      
        B 
        = 
        
          
            ( 
            
              
                B 
                
                  0 
                 
               
              , 
              
                B 
                
                  1 
                 
               
              , 
              
                B 
                
                  2 
                 
               
              , 
              
                B 
                
                  3 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
       
     
    {\displaystyle B=\left(B_{0},B_{1},B_{2},B_{3}\right)^{\top }\in \mathbb {R} {\mathcal {P}}^{3}} 
   
 homogeneous coordinates  of the projective space . Its Plücker matrix is:
  
    
      
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        ∝ 
        
          A 
         
        
          
            B 
           
          
            ⊤ 
           
         
        − 
        
          B 
         
        
          
            A 
           
          
            ⊤ 
           
         
        = 
        
          ( 
          
            
              
                
                  0 
                 
                
                  − 
                  
                    L 
                    
                      01 
                     
                   
                 
                
                  − 
                  
                    L 
                    
                      02 
                     
                   
                 
                
                  − 
                  
                    L 
                    
                      03 
                     
                   
                 
               
              
                
                  
                    L 
                    
                      01 
                     
                   
                 
                
                  0 
                 
                
                  − 
                  
                    L 
                    
                      12 
                     
                   
                 
                
                  − 
                  
                    L 
                    
                      13 
                     
                   
                 
               
              
                
                  
                    L 
                    
                      02 
                     
                   
                 
                
                  
                    L 
                    
                      12 
                     
                   
                 
                
                  0 
                 
                
                  − 
                  
                    L 
                    
                      23 
                     
                   
                 
               
              
                
                  
                    L 
                    
                      03 
                     
                   
                 
                
                  
                    L 
                    
                      13 
                     
                   
                 
                
                  
                    L 
                    
                      23 
                     
                   
                 
                
                  0 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle [\mathbf {L} ]_{\times }\propto \mathbf {A} \mathbf {B} ^{\top }-\mathbf {B} \mathbf {A} ^{\top }=\left({\begin{array}{cccc}0&-L_{01}&-L_{02}&-L_{03}\\L_{01}&0&-L_{12}&-L_{13}\\L_{02}&L_{12}&0&-L_{23}\\L_{03}&L_{13}&L_{23}&0\end{array}}\right)} 
   
 Where the skew-symmetric  
  
    
      
        4 
        × 
        4 
       
     
    {\displaystyle 4\times 4} 
   
 Plücker coordinates  
  
    
      
        
          L 
         
        ∝ 
        ( 
        
          L 
          
            01 
           
         
        , 
        
          L 
          
            02 
           
         
        , 
        
          L 
          
            03 
           
         
        , 
        
          L 
          
            12 
           
         
        , 
        
          L 
          
            13 
           
         
        , 
        
          L 
          
            23 
           
         
        
          ) 
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {L} \propto (L_{01},L_{02},L_{03},L_{12},L_{13},L_{23})^{\top }} 
   
 with
  
    
      
        
          L 
          
            i 
            j 
           
         
        = 
        
          A 
          
            i 
           
         
        
          B 
          
            j 
           
         
        − 
        
          B 
          
            i 
           
         
        
          A 
          
            j 
           
         
        . 
       
     
    {\displaystyle L_{ij}=A_{i}B_{j}-B_{i}A_{j}.} 
   
 Plücker coordinates fulfil the Grassmann–Plücker relations 
  
    
      
        
          L 
          
            01 
           
         
        
          L 
          
            23 
           
         
        − 
        
          L 
          
            02 
           
         
        
          L 
          
            13 
           
         
        + 
        
          L 
          
            03 
           
         
        
          L 
          
            12 
           
         
        = 
        0 
       
     
    {\displaystyle L_{01}L_{23}-L_{02}L_{13}+L_{03}L_{12}=0} 
   
 and are defined up to scale. A Plücker matrix has only rank  2 and four degrees of freedom (just like lines in 
  
    
      
        
          
            R 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbb {R} ^{3}} 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle \mathbf {A} } 
   
 
  
    
      
        
          B 
         
       
     
    {\displaystyle \mathbf {B} } 
   
 cross product  for both the intersection (meet) of two lines, as well as the joining line of two points in the projective plane.
The Plücker matrix allows us to express the following geometric operations as matrix-vector product:
Plane contains line: 
  
    
      
        
          0 
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
       
     
    {\displaystyle \mathbf {0} =[\mathbf {L} ]_{\times }\mathbf {E} } 
   
  
  
    
      
        
          X 
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
       
     
    {\displaystyle \mathbf {X} =[\mathbf {L} ]_{\times }\mathbf {E} } 
   
 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 
  
    
      
        
          E 
         
       
     
    {\displaystyle \mathbf {E} } 
   
 Point lies on line: 
  
    
      
        
          0 
         
        = 
        [ 
        
          
            
              
                L 
               
              ~ 
             
           
         
        
          ] 
          
            × 
           
         
        
          X 
         
       
     
    {\displaystyle \mathbf {0} =[{\tilde {\mathbf {L} }}]_{\times }\mathbf {X} } 
   
  
  
    
      
        
          E 
         
        = 
        [ 
        
          
            
              
                L 
               
              ~ 
             
           
         
        
          ] 
          
            × 
           
         
        
          X 
         
       
     
    {\displaystyle \mathbf {E} =[{\tilde {\mathbf {L} }}]_{\times }\mathbf {X} } 
   
 
  
    
      
        
          E 
         
       
     
    {\displaystyle \mathbf {E} } 
   
 
  
    
      
        
          X 
         
       
     
    {\displaystyle \mathbf {X} } 
   
 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 Direction of a line: 
  
    
      
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          π 
          
            ∞ 
           
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        ( 
        0 
        , 
        0 
        , 
        0 
        , 
        1 
        
          ) 
          
            ⊤ 
           
         
        = 
        
          
            ( 
            
              − 
              
                L 
                
                  03 
                 
               
              , 
              − 
              
                L 
                
                  13 
                 
               
              , 
              − 
              
                L 
                
                  23 
                 
               
              , 
              0 
             
            ) 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle [\mathbf {L} ]_{\times }\pi ^{\infty }=[\mathbf {L} ]_{\times }(0,0,0,1)^{\top }=\left(-L_{03},-L_{13},-L_{23},0\right)^{\top }} 
   
  
Closest point to the origin 
  
    
      
        
          
            X 
           
          
            0 
           
         
        ≅ 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          π 
          
            ∞ 
           
         
        . 
       
     
    {\displaystyle \mathbf {X} _{0}\cong [\mathbf {L} ]_{\times }[\mathbf {L} ]_{\times }\pi ^{\infty }.} 
   
  Two arbitrary distinct points on the line can be written as a linear combination of 
  
    
      
        
          A 
         
       
     
    {\displaystyle \mathbf {A} } 
   
 
  
    
      
        
          B 
         
       
     
    {\displaystyle \mathbf {B} } 
   
 
  
    
      
        
          
            A 
           
          
            ′ 
           
         
        ∝ 
        
          A 
         
        α 
        + 
        
          B 
         
        β 
        
           and  
         
        
          
            B 
           
          
            ′ 
           
         
        ∝ 
        
          A 
         
        γ 
        + 
        
          B 
         
        δ 
        . 
       
     
    {\displaystyle \mathbf {A} ^{\prime }\propto \mathbf {A} \alpha +\mathbf {B} \beta {\text{ and }}\mathbf {B} ^{\prime }\propto \mathbf {A} \gamma +\mathbf {B} \delta .} 
   
 Their Plücker matrix is thus:
  
    
      
        
          
            
              
                
                  [ 
                 
                
                  
                    L 
                   
                  
                    ′ 
                   
                 
                
                  
                    ] 
                   
                  
                    × 
                   
                 
               
              
                = 
                
                  
                    A 
                   
                  
                    ′ 
                   
                 
                
                  
                    B 
                   
                  
                    ′ 
                   
                 
                − 
                
                  
                    B 
                   
                  
                    ′ 
                   
                 
                
                  
                    A 
                   
                  
                    ′ 
                   
                 
               
             
            
              
                = 
                ( 
                
                  A 
                 
                α 
                + 
                
                  B 
                 
                β 
                ) 
                ( 
                
                  A 
                 
                γ 
                + 
                
                  B 
                 
                δ 
                
                  ) 
                  
                    ⊤ 
                   
                 
                − 
                ( 
                
                  A 
                 
                γ 
                + 
                
                  B 
                 
                δ 
                ) 
                ( 
                
                  A 
                 
                α 
                + 
                
                  B 
                 
                β 
                
                  ) 
                  
                    ⊤ 
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        ( 
                        α 
                        δ 
                        − 
                        β 
                        γ 
                        ) 
                       
                      ⏟ 
                     
                   
                  
                    λ 
                   
                 
                [ 
                
                  L 
                 
                
                  ] 
                  
                    × 
                   
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{[}\mathbf {L} ^{\prime }{]}_{\times }&=\mathbf {A} ^{\prime }\mathbf {B} ^{\prime }-\mathbf {B} ^{\prime }\mathbf {A} ^{\prime }\\[6pt]&=(\mathbf {A} \alpha +\mathbf {B} \beta )(\mathbf {A} \gamma +\mathbf {B} \delta )^{\top }-(\mathbf {A} \gamma +\mathbf {B} \delta )(\mathbf {A} \alpha +\mathbf {B} \beta )^{\top }\\[6pt]&=\underbrace {(\alpha \delta -\beta \gamma )} _{\lambda }[\mathbf {L} ]_{\times },\end{aligned}}} 
   
 up to scale identical to 
  
    
      
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
       
     
    {\displaystyle [\mathbf {L} ]_{\times }} 
   
 
Intersection with a plane [ edit ] The meet of a plane and a line in projective three-space as expressed by multiplication with the Plücker matrix Let 
  
    
      
        
          E 
         
        = 
        
          
            ( 
            
              
                E 
                
                  0 
                 
               
              , 
              
                E 
                
                  1 
                 
               
              , 
              
                E 
                
                  2 
                 
               
              , 
              
                E 
                
                  3 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
       
     
    {\displaystyle \mathbf {E} =\left(E_{0},E_{1},E_{2},E_{3}\right)^{\top }\in \mathbb {R} {\mathcal {P}}^{3}} 
   
 
  
    
      
        
          E 
          
            0 
           
         
        x 
        + 
        
          E 
          
            1 
           
         
        y 
        + 
        
          E 
          
            2 
           
         
        z 
        + 
        
          E 
          
            3 
           
         
        = 
        0. 
       
     
    {\displaystyle E_{0}x+E_{1}y+E_{2}z+E_{3}=0.} 
   
 which does not contain the line 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 
  
    
      
        
          X 
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
        = 
        
          A 
         
        
          
            
              
                
                  
                    
                      B 
                     
                    
                      ⊤ 
                     
                   
                  
                    E 
                   
                 
                ⏟ 
               
             
            α 
           
         
        − 
        
          B 
         
        
          
            
              
                
                  
                    
                      A 
                     
                    
                      ⊤ 
                     
                   
                  
                    E 
                   
                 
                ⏟ 
               
             
            β 
           
         
        = 
        
          A 
         
        α 
        + 
        
          B 
         
        β 
        , 
       
     
    {\displaystyle \mathbf {X} =[\mathbf {L} ]_{\times }\mathbf {E} =\mathbf {A} {\underset {\alpha }{\underbrace {\mathbf {B} ^{\top }\mathbf {E} } }}-\mathbf {B} {\underset {\beta }{\underbrace {\mathbf {A} ^{\top }\mathbf {E} } }}=\mathbf {A} \alpha +\mathbf {B} \beta ,} 
   
 which lies on the line 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle \mathbf {A} } 
   
 
  
    
      
        
          B 
         
       
     
    {\displaystyle \mathbf {B} } 
   
 
  
    
      
        
          X 
         
       
     
    {\displaystyle \mathbf {X} } 
   
 
  
    
      
        
          E 
         
       
     
    {\displaystyle \mathbf {E} } 
   
 
  
    
      
        
          
            E 
           
          
            ⊤ 
           
         
        
          X 
         
        = 
        
          
            E 
           
          
            ⊤ 
           
         
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
        = 
        
          
            
              
                
                  
                    
                      E 
                     
                    
                      ⊤ 
                     
                   
                  
                    A 
                   
                 
                ⏟ 
               
             
            α 
           
         
        
          
            
              
                
                  
                    
                      B 
                     
                    
                      ⊤ 
                     
                   
                  
                    E 
                   
                 
                ⏟ 
               
             
            β 
           
         
        − 
        
          
            
              
                
                  
                    
                      E 
                     
                    
                      ⊤ 
                     
                   
                  
                    B 
                   
                 
                ⏟ 
               
             
            β 
           
         
        
          
            
              
                
                  
                    
                      A 
                     
                    
                      ⊤ 
                     
                   
                  
                    E 
                   
                 
                ⏟ 
               
             
            α 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle \mathbf {E} ^{\top }\mathbf {X} =\mathbf {E} ^{\top }[\mathbf {L} ]_{\times }\mathbf {E} ={\underset {\alpha }{\underbrace {\mathbf {E} ^{\top }\mathbf {A} } }}{\underset {\beta }{\underbrace {\mathbf {B} ^{\top }\mathbf {E} } }}-{\underset {\beta }{\underbrace {\mathbf {E} ^{\top }\mathbf {B} } }}{\underset {\alpha }{\underbrace {\mathbf {A} ^{\top }\mathbf {E} } }}=0,} 
   
 and must therefore be their point of intersection.
In addition, the product of the Plücker matrix with a plane is the zero-vector, exactly if the line 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 
  
    
      
        α 
        = 
        β 
        = 
        0 
        ⟺ 
        
          E 
         
       
     
    {\displaystyle \alpha =\beta =0\iff \mathbf {E} } 
   
 
  
    
      
        
          L 
         
        . 
       
     
    {\displaystyle \mathbf {L} .} 
   
 [ edit ] The join of a point and a line in projective three-space as expressed by multiplication with the Plücker matrix In projective three-space, both points and planes have the same representation as 4-vectors and the algebraic description of their geometric relationship (point lies on plane) is symmetric. By interchanging the terms plane and point in a theorem, one obtains a dual  theorem which is also true.
In case of the Plücker matrix, there exists a dual representation of the line in space as the intersection of two planes:
  
    
      
        E 
        = 
        
          
            ( 
            
              
                E 
                
                  0 
                 
               
              , 
              
                E 
                
                  1 
                 
               
              , 
              
                E 
                
                  2 
                 
               
              , 
              
                E 
                
                  3 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
       
     
    {\displaystyle E=\left(E_{0},E_{1},E_{2},E_{3}\right)^{\top }\in \mathbb {R} {\mathcal {P}}^{3}} 
   
 and
  
    
      
        F 
        = 
        
          
            ( 
            
              
                F 
                
                  0 
                 
               
              , 
              
                F 
                
                  1 
                 
               
              , 
              
                F 
                
                  2 
                 
               
              , 
              
                F 
                
                  3 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
       
     
    {\displaystyle F=\left(F_{0},F_{1},F_{2},F_{3}\right)^{\top }\in \mathbb {R} {\mathcal {P}}^{3}} 
   
 in homogeneous coordinates  of projective space . Their Plücker matrix is:
  
    
      
        
          
            [ 
            
              
                
                  
                    L 
                   
                  ~ 
                 
               
             
            ] 
           
          
            × 
           
         
        = 
        
          E 
         
        
          
            F 
           
          
            ⊤ 
           
         
        − 
        
          F 
         
        
          
            E 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \left[{\tilde {\mathbf {L} }}\right]_{\times }=\mathbf {E} \mathbf {F} ^{\top }-\mathbf {F} \mathbf {E} ^{\top }} 
   
 and
  
    
      
        
          G 
         
        = 
        
          
            [ 
            
              
                
                  
                    L 
                   
                  ~ 
                 
               
             
            ] 
           
          
            × 
           
         
        
          X 
         
       
     
    {\displaystyle \mathbf {G} =\left[{\tilde {\mathbf {L} }}\right]_{\times }\mathbf {X} } 
   
 describes the plane 
  
    
      
        
          G 
         
       
     
    {\displaystyle \mathbf {G} } 
   
 
  
    
      
        
          X 
         
       
     
    {\displaystyle \mathbf {X} } 
   
 
  
    
      
        
          L 
         
       
     
    {\displaystyle \mathbf {L} } 
   
 
[ edit ] As the vector 
  
    
      
        
          X 
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
       
     
    {\displaystyle \mathbf {X} =[\mathbf {L} ]_{\times }\mathbf {E} } 
   
 
  
    
      
        
          E 
         
       
     
    {\displaystyle \mathbf {E} } 
   
 
  
    
      
        ∀ 
        
          E 
         
        ∈ 
        
          R 
         
        
          
            
              P 
             
           
          
            3 
           
         
        : 
        
          X 
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          E 
         
        
           lies on  
         
        
          L 
         
        ⟺ 
        
          
            [ 
            
              
                
                  
                    L 
                   
                  ~ 
                 
               
             
            ] 
           
          
            × 
           
         
        
          X 
         
        = 
        
          0 
         
        . 
       
     
    {\displaystyle \forall \mathbf {E} \in \mathbb {R} {\mathcal {P}}^{3}:\,\mathbf {X} =[\mathbf {L} ]_{\times }\mathbf {E} {\text{ lies on }}\mathbf {L} \iff \left[{\tilde {\mathbf {L} }}\right]_{\times }\mathbf {X} =\mathbf {0} .} 
   
 Thus:
  
    
      
        
          
            ( 
            
              [ 
              
                
                  
                    
                      L 
                     
                    ~ 
                   
                 
               
              
                ] 
                
                  × 
                 
               
              [ 
              
                L 
               
              
                ] 
                
                  × 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        = 
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        
          
            [ 
            
              
                
                  
                    L 
                   
                  ~ 
                 
               
             
            ] 
           
          
            × 
           
         
        = 
        
          0 
         
        ∈ 
        
          
            R 
           
          
            4 
            × 
            4 
           
         
        . 
       
     
    {\displaystyle \left([{\tilde {\mathbf {L} }}]_{\times }[\mathbf {L} ]_{\times }\right)^{\top }=[\mathbf {L} ]_{\times }\left[{\tilde {\mathbf {L} }}\right]_{\times }=\mathbf {0} \in \mathbb {R} ^{4\times 4}.} 
   
 The following product fulfills these properties:
  
    
      
        
          
            
              
                
                  ( 
                  
                    
                      
                        
                          0 
                         
                        
                          
                            L 
                            
                              23 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              13 
                             
                           
                         
                        
                          
                            L 
                            
                              12 
                             
                           
                         
                       
                      
                        
                          − 
                          
                            L 
                            
                              23 
                             
                           
                         
                        
                          0 
                         
                        
                          
                            L 
                            
                              03 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              02 
                             
                           
                         
                       
                      
                        
                          
                            L 
                            
                              13 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              03 
                             
                           
                         
                        
                          0 
                         
                        
                          
                            L 
                            
                              01 
                             
                           
                         
                       
                      
                        
                          − 
                          
                            L 
                            
                              12 
                             
                           
                         
                        
                          
                            L 
                            
                              02 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              01 
                             
                           
                         
                        
                          0 
                         
                       
                     
                   
                  ) 
                 
                
                  ( 
                  
                    
                      
                        
                          0 
                         
                        
                          − 
                          
                            L 
                            
                              01 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              02 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              03 
                             
                           
                         
                       
                      
                        
                          
                            L 
                            
                              01 
                             
                           
                         
                        
                          0 
                         
                        
                          − 
                          
                            L 
                            
                              12 
                             
                           
                         
                        
                          − 
                          
                            L 
                            
                              13 
                             
                           
                         
                       
                      
                        
                          
                            L 
                            
                              02 
                             
                           
                         
                        
                          
                            L 
                            
                              12 
                             
                           
                         
                        
                          0 
                         
                        
                          − 
                          
                            L 
                            
                              23 
                             
                           
                         
                       
                      
                        
                          
                            L 
                            
                              03 
                             
                           
                         
                        
                          
                            L 
                            
                              13 
                             
                           
                         
                        
                          
                            L 
                            
                              23 
                             
                           
                         
                        
                          0 
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                
                 
               
              
                
                  ( 
                  
                    
                      L 
                      
                        01 
                       
                     
                    
                      L 
                      
                        23 
                       
                     
                    − 
                    
                      L 
                      
                        02 
                       
                     
                    
                      L 
                      
                        13 
                       
                     
                    + 
                    
                      L 
                      
                        03 
                       
                     
                    
                      L 
                      
                        12 
                       
                     
                   
                  ) 
                 
                ⋅ 
                
                  ( 
                  
                    
                      
                        
                          1 
                         
                        
                          0 
                         
                        
                          0 
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          1 
                         
                        
                          0 
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          0 
                         
                        
                          1 
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          0 
                         
                        
                          0 
                         
                        
                          1 
                         
                       
                     
                   
                  ) 
                 
                = 
                
                  0 
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\left({\begin{array}{cccc}0&L_{23}&-L_{13}&L_{12}\\-L_{23}&0&L_{03}&-L_{02}\\L_{13}&-L_{03}&0&L_{01}\\-L_{12}&L_{02}&-L_{01}&0\end{array}}\right)\left({\begin{array}{cccc}0&-L_{01}&-L_{02}&-L_{03}\\L_{01}&0&-L_{12}&-L_{13}\\L_{02}&L_{12}&0&-L_{23}\\L_{03}&L_{13}&L_{23}&0\end{array}}\right)\\[10pt]={}&\left(L_{01}L_{23}-L_{02}L_{13}+L_{03}L_{12}\right)\cdot \left({\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}}\right)=\mathbf {0} ,\end{aligned}}} 
   
 due to the Grassmann–Plücker relation . With the uniqueness of Plücker matrices up to scalar multiples, for the primal Plücker coordinates
  
    
      
        
          L 
         
        = 
        
          
            ( 
            
              
                L 
                
                  01 
                 
               
              , 
              
                L 
                
                  02 
                 
               
              , 
              
                L 
                
                  03 
                 
               
              , 
              
                L 
                
                  12 
                 
               
              , 
              
                L 
                
                  13 
                 
               
              , 
              
                L 
                
                  23 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {L} =\left(L_{01},\,L_{02},\,L_{03},\,L_{12},\,L_{13},\,L_{23}\right)^{\top }} 
   
 we obtain the following dual Plücker coordinates:
  
    
      
        
          
            
              
                L 
               
              ~ 
             
           
         
        = 
        
          
            ( 
            
              
                L 
                
                  23 
                 
               
              , 
              − 
              
                L 
                
                  13 
                 
               
              , 
              
                L 
                
                  12 
                 
               
              , 
              
                L 
                
                  03 
                 
               
              , 
              − 
              
                L 
                
                  02 
                 
               
              , 
              
                L 
                
                  01 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
        . 
       
     
    {\displaystyle {\tilde {\mathbf {L} }}=\left(L_{23},\,-L_{13},\,L_{12},\,L_{03},\,-L_{02},\,L_{01}\right)^{\top }.} 
   
 In the projective plane [ edit ] Duality of join and meet operations in two-space. The 'join' of two points in the projective plane is the operation of connecting two points with a straight line. Its line equation can be computed using the cross product :
  
    
      
        
          l 
         
        ∝ 
        
          a 
         
        × 
        
          b 
         
        = 
        
          ( 
          
            
              
                
                  
                    a 
                    
                      1 
                     
                   
                  
                    b 
                    
                      2 
                     
                   
                  − 
                  
                    b 
                    
                      1 
                     
                   
                  
                    a 
                    
                      2 
                     
                   
                 
               
              
                
                  
                    b 
                    
                      0 
                     
                   
                  
                    a 
                    
                      2 
                     
                   
                  − 
                  
                    a 
                    
                      0 
                     
                   
                  
                    b 
                    
                      2 
                     
                   
                 
               
              
                
                  
                    a 
                    
                      0 
                     
                   
                  
                    b 
                    
                      1 
                     
                   
                  − 
                  
                    a 
                    
                      1 
                     
                   
                  
                    b 
                    
                      0 
                     
                   
                 
               
             
           
          ) 
         
        = 
        
          ( 
          
            
              
                
                  
                    l 
                    
                      0 
                     
                   
                 
               
              
                
                  
                    l 
                    
                      1 
                     
                   
                 
               
              
                
                  
                    l 
                    
                      2 
                     
                   
                 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle \mathbf {l} \propto \mathbf {a} \times \mathbf {b} =\left({\begin{array}{c}a_{1}b_{2}-b_{1}a_{2}\\b_{0}a_{2}-a_{0}b_{2}\\a_{0}b_{1}-a_{1}b_{0}\end{array}}\right)=\left({\begin{array}{c}l_{0}\\l_{1}\\l_{2}\end{array}}\right).} 
   
 Dually, one can express the 'meet', or intersection of two straight lines by the cross-product:
  
    
      
        
          x 
         
        ∝ 
        
          l 
         
        × 
        
          m 
         
       
     
    {\displaystyle \mathbf {x} \propto \mathbf {l} \times \mathbf {m} } 
   
 The relationship to Plücker matrices becomes evident, if one writes the cross product  as a matrix-vector product with a skew-symmetric matrix:
  
    
      
        [ 
        
          l 
         
        
          ] 
          
            × 
           
         
        = 
        
          a 
         
        
          
            b 
           
          
            ⊤ 
           
         
        − 
        
          b 
         
        
          
            a 
           
          
            ⊤ 
           
         
        = 
        
          ( 
          
            
              
                
                  0 
                 
                
                  
                    l 
                    
                      2 
                     
                   
                 
                
                  − 
                  
                    l 
                    
                      1 
                     
                   
                 
               
              
                
                  − 
                  
                    l 
                    
                      2 
                     
                   
                 
                
                  0 
                 
                
                  
                    l 
                    
                      0 
                     
                   
                 
               
              
                
                  
                    l 
                    
                      1 
                     
                   
                 
                
                  − 
                  
                    l 
                    
                      0 
                     
                   
                 
                
                  0 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle [\mathbf {l} ]_{\times }=\mathbf {a} \mathbf {b} ^{\top }-\mathbf {b} \mathbf {a} ^{\top }=\left({\begin{array}{ccc}0&l_{2}&-l_{1}\\-l_{2}&0&l_{0}\\l_{1}&-l_{0}&0\end{array}}\right)} 
   
 and analogously 
  
    
      
        [ 
        
          x 
         
        
          ] 
          
            × 
           
         
        = 
        
          l 
         
        
          
            m 
           
          
            ⊤ 
           
         
        − 
        
          m 
         
        
          
            l 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle [\mathbf {x} ]_{\times }=\mathbf {l} \mathbf {m} ^{\top }-\mathbf {m} \mathbf {l} ^{\top }} 
   
 
Geometric interpretation [ edit ] Let 
  
    
      
        
          d 
         
        = 
        
          
            ( 
            
              − 
              
                L 
                
                  03 
                 
               
              , 
              − 
              
                L 
                
                  13 
                 
               
              , 
              − 
              
                L 
                
                  23 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {d} =\left(-L_{03},\,-L_{13},\,-L_{23}\right)^{\top }} 
   
 
  
    
      
        
          m 
         
        = 
        
          
            ( 
            
              
                L 
                
                  12 
                 
               
              , 
              − 
              
                L 
                
                  02 
                 
               
              , 
              
                L 
                
                  01 
                 
               
             
            ) 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {m} =\left(L_{12},\,-L_{02},\,L_{01}\right)^{\top }} 
   
 
  
    
      
        [ 
        
          L 
         
        
          ] 
          
            × 
           
         
        = 
        
          ( 
          
            
              
                
                  [ 
                  
                    m 
                   
                  
                    ] 
                    
                      × 
                     
                   
                 
                
                  
                    d 
                   
                 
               
              
                
                  − 
                  
                    d 
                   
                 
                
                  0 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle [\mathbf {L} ]_{\times }=\left({\begin{array}{cc}[\mathbf {m} ]_{\times }&\mathbf {d} \\-\mathbf {d} &0\end{array}}\right)} 
   
 and
  
    
      
        [ 
        
          
            
              
                L 
               
              ~ 
             
           
         
        
          ] 
          
            × 
           
         
        = 
        
          ( 
          
            
              
                
                  [ 
                  − 
                  
                    d 
                   
                  
                    ] 
                    
                      × 
                     
                   
                 
                
                  
                    m 
                   
                 
               
              
                
                  − 
                  
                    m 
                   
                 
                
                  0 
                 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle [{\tilde {\mathbf {L} }}]_{\times }=\left({\begin{array}{cc}[-\mathbf {d} ]_{\times }&\mathbf {m} \\-\mathbf {m} &0\end{array}}\right),} 
   
 [citation needed  where 
  
    
      
        
          d 
         
       
     
    {\displaystyle \mathbf {d} } 
   
 
  
    
      
        
          m 
         
       
     
    {\displaystyle \mathbf {m} } 
   
 geometric intuition of Plücker coordinates .