Mathematical notation
 
Multi-index notation  is a mathematical notation  that simplifies formulas used in multivariable calculus , partial differential equations  and the theory of distributions , by generalising the concept of an integer index  to an ordered tuple  of indices.
 
Definition and basic properties [ edit ]  
An n -dimensional multi-index  is an 
  
    
      
        n 
       
     
    {\textstyle n} 
   
  -tuple 
  
    
      
        α 
        = 
        ( 
        
          α 
          
            1 
           
         
        , 
        
          α 
          
            2 
           
         
        , 
        … 
        , 
        
          α 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})} 
   
  
of non-negative integers  (i.e. an element of the 
  
    
      
        n 
       
     
    {\textstyle n} 
   
  -dimensional  set  of natural numbers , denoted 
  
    
      
        
          
            N 
           
          
            0 
           
          
            n 
           
         
       
     
    {\displaystyle \mathbb {N} _{0}^{n}} 
   
  ).
For multi-indices 
  
    
      
        α 
        , 
        β 
        ∈ 
        
          
            N 
           
          
            0 
           
          
            n 
           
         
       
     
    {\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} 
   
   and 
  
    
      
        x 
        = 
        ( 
        
          x 
          
            1 
           
         
        , 
        
          x 
          
            2 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        ) 
        ∈ 
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle x=(x_{1},x_{2},\ldots ,x_{n})\in \mathbb {R} ^{n}} 
   
  , one defines:
Componentwise sum and difference 
  
    
      
        α 
        ± 
        β 
        = 
        ( 
        
          α 
          
            1 
           
         
        ± 
        
          β 
          
            1 
           
         
        , 
         
        
          α 
          
            2 
           
         
        ± 
        
          β 
          
            2 
           
         
        , 
        … 
        , 
         
        
          α 
          
            n 
           
         
        ± 
        
          β 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \alpha \pm \beta =(\alpha _{1}\pm \beta _{1},\,\alpha _{2}\pm \beta _{2},\ldots ,\,\alpha _{n}\pm \beta _{n})} 
   
  
Partial order  
  
    
      
        α 
        ≤ 
        β 
         
        ⇔ 
         
        
          α 
          
            i 
           
         
        ≤ 
        
          β 
          
            i 
           
         
         
        ∀ 
         
        i 
        ∈ 
        { 
        1 
        , 
        … 
        , 
        n 
        } 
       
     
    {\displaystyle \alpha \leq \beta \quad \Leftrightarrow \quad \alpha _{i}\leq \beta _{i}\quad \forall \,i\in \{1,\ldots ,n\}} 
   
  
Sum of components (absolute value) 
  
    
      
        
          | 
         
        α 
        
          | 
         
        = 
        
          α 
          
            1 
           
         
        + 
        
          α 
          
            2 
           
         
        + 
        ⋯ 
        + 
        
          α 
          
            n 
           
         
       
     
    {\displaystyle |\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}} 
   
  
Factorial  
  
    
      
        α 
        ! 
        = 
        
          α 
          
            1 
           
         
        ! 
        ⋅ 
        
          α 
          
            2 
           
         
        ! 
        ⋯ 
        
          α 
          
            n 
           
         
        ! 
       
     
    {\displaystyle \alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!} 
   
  
Binomial coefficient  
  
    
      
        
          
            
              ( 
             
            
              α 
              β 
             
            
              ) 
             
           
         
        = 
        
          
            
              ( 
             
            
              
                α 
                
                  1 
                 
               
              
                β 
                
                  1 
                 
               
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              
                α 
                
                  2 
                 
               
              
                β 
                
                  2 
                 
               
             
            
              ) 
             
           
         
        ⋯ 
        
          
            
              ( 
             
            
              
                α 
                
                  n 
                 
               
              
                β 
                
                  n 
                 
               
             
            
              ) 
             
           
         
        = 
        
          
            
              α 
              ! 
             
            
              β 
              ! 
              ( 
              α 
              − 
              β 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle {\binom {\alpha }{\beta }}={\binom {\alpha _{1}}{\beta _{1}}}{\binom {\alpha _{2}}{\beta _{2}}}\cdots {\binom {\alpha _{n}}{\beta _{n}}}={\frac {\alpha !}{\beta !(\alpha -\beta )!}}} 
   
  
Multinomial coefficient  
  
    
      
        
          
            
              ( 
             
            
              k 
              α 
             
            
              ) 
             
           
         
        = 
        
          
            
              k 
              ! 
             
            
              
                α 
                
                  1 
                 
               
              ! 
              
                α 
                
                  2 
                 
               
              ! 
              ⋯ 
              
                α 
                
                  n 
                 
               
              ! 
             
           
         
        = 
        
          
            
              k 
              ! 
             
            
              α 
              ! 
             
           
         
       
     
    {\displaystyle {\binom {k}{\alpha }}={\frac {k!}{\alpha _{1}!\alpha _{2}!\cdots \alpha _{n}!}}={\frac {k!}{\alpha !}}} 
   
   where 
  
    
      
        k 
        := 
        
          | 
         
        α 
        
          | 
         
        ∈ 
        
          
            N 
           
          
            0 
           
         
       
     
    {\displaystyle k:=|\alpha |\in \mathbb {N} _{0}} 
   
  . 
Power  
  
    
      
        
          x 
          
            α 
           
         
        = 
        
          x 
          
            1 
           
          
            
              α 
              
                1 
               
             
           
         
        
          x 
          
            2 
           
          
            
              α 
              
                2 
               
             
           
         
        … 
        
          x 
          
            n 
           
          
            
              α 
              
                n 
               
             
           
         
       
     
    {\displaystyle x^{\alpha }=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}} 
   
  . 
Higher-order partial derivative  
  
    
      
        
          ∂ 
          
            α 
           
         
        = 
        
          ∂ 
          
            1 
           
          
            
              α 
              
                1 
               
             
           
         
        
          ∂ 
          
            2 
           
          
            
              α 
              
                2 
               
             
           
         
        … 
        
          ∂ 
          
            n 
           
          
            
              α 
              
                n 
               
             
           
         
        , 
       
     
    {\displaystyle \partial ^{\alpha }=\partial _{1}^{\alpha _{1}}\partial _{2}^{\alpha _{2}}\ldots \partial _{n}^{\alpha _{n}},} 
   
   where 
  
    
      
        
          ∂ 
          
            i 
           
          
            
              α 
              
                i 
               
             
           
         
        := 
        
          ∂ 
          
            
              α 
              
                i 
               
             
           
         
        
          / 
         
        ∂ 
        
          x 
          
            i 
           
          
            
              α 
              
                i 
               
             
           
         
       
     
    {\displaystyle \partial _{i}^{\alpha _{i}}:=\partial ^{\alpha _{i}}/\partial x_{i}^{\alpha _{i}}} 
   
   (see also 4-gradient ). Sometimes the notation 
  
    
      
        
          D 
          
            α 
           
         
        = 
        
          ∂ 
          
            α 
           
         
       
     
    {\displaystyle D^{\alpha }=\partial ^{\alpha }} 
   
   is also used.[ 1]  
The multi-index notation allows the extension of many formulae from elementary calculus to the corresponding multi-variable case. Below are some examples. In all the following, 
  
    
      
        x 
        , 
        y 
        , 
        h 
        ∈ 
        
          
            C 
           
          
            n 
           
         
       
     
    {\displaystyle x,y,h\in \mathbb {C} ^{n}} 
   
   (or 
  
    
      
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \mathbb {R} ^{n}} 
   
  ), 
  
    
      
        α 
        , 
        ν 
        ∈ 
        
          
            N 
           
          
            0 
           
          
            n 
           
         
       
     
    {\displaystyle \alpha ,\nu \in \mathbb {N} _{0}^{n}} 
   
  , and 
  
    
      
        f 
        , 
        g 
        , 
        
          a 
          
            α 
           
         
        : 
        
          
            C 
           
          
            n 
           
         
        → 
        
          C 
         
       
     
    {\displaystyle f,g,a_{\alpha }\colon \mathbb {C} ^{n}\to \mathbb {C} } 
   
   (or 
  
    
      
        
          
            R 
           
          
            n 
           
         
        → 
        
          R 
         
       
     
    {\displaystyle \mathbb {R} ^{n}\to \mathbb {R} } 
   
  ).
Multinomial theorem  
  
    
      
        
          
            ( 
            
              
                ∑ 
                
                  i 
                  = 
                  1 
                 
                
                  n 
                 
               
              
                x 
                
                  i 
                 
               
             
            ) 
           
          
            k 
           
         
        = 
        
          ∑ 
          
            
              | 
             
            α 
            
              | 
             
            = 
            k 
           
         
        
          
            
              ( 
             
            
              k 
              α 
             
            
              ) 
             
           
         
         
        
          x 
          
            α 
           
         
       
     
    {\displaystyle \left(\sum _{i=1}^{n}x_{i}\right)^{k}=\sum _{|\alpha |=k}{\binom {k}{\alpha }}\,x^{\alpha }} 
   
  
Multi-binomial theorem  
  
    
      
        ( 
        x 
        + 
        y 
        
          ) 
          
            α 
           
         
        = 
        
          ∑ 
          
            ν 
            ≤ 
            α 
           
         
        
          
            
              ( 
             
            
              α 
              ν 
             
            
              ) 
             
           
         
         
        
          x 
          
            ν 
           
         
        
          y 
          
            α 
            − 
            ν 
           
         
        . 
       
     
    {\displaystyle (x+y)^{\alpha }=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,x^{\nu }y^{\alpha -\nu }.} 
   
   Note that, since x  + y   is a vector and α   is a multi-index, the expression on the left is short for (x 1  + y 1 )α 1  ⋯(x n   + y n  )α n  . 
Leibniz formula  
For smooth functions 
  
    
      
        f 
       
     
    {\textstyle f} 
   
   and 
  
    
      
        g 
       
     
    {\textstyle g} 
   
  ,
  
    
      
        
          ∂ 
          
            α 
           
         
        ( 
        f 
        g 
        ) 
        = 
        
          ∑ 
          
            ν 
            ≤ 
            α 
           
         
        
          
            
              ( 
             
            
              α 
              ν 
             
            
              ) 
             
           
         
         
        
          ∂ 
          
            ν 
           
         
        f 
         
        
          ∂ 
          
            α 
            − 
            ν 
           
         
        g 
        . 
       
     
    {\displaystyle \partial ^{\alpha }(fg)=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,\partial ^{\nu }f\,\partial ^{\alpha -\nu }g.} 
   
  
Taylor series  
For an analytic function  
  
    
      
        f 
       
     
    {\textstyle f} 
   
   in 
  
    
      
        n 
       
     
    {\textstyle n} 
   
   variables one has 
  
    
      
        f 
        ( 
        x 
        + 
        h 
        ) 
        = 
        
          ∑ 
          
            α 
            ∈ 
            
              
                N 
               
              
                0 
               
              
                n 
               
             
           
         
        
          
            
              
                
                  ∂ 
                  
                    α 
                   
                 
                f 
                ( 
                x 
                ) 
               
              
                α 
                ! 
               
             
           
          
            h 
            
              α 
             
           
         
        . 
       
     
    {\displaystyle f(x+h)=\sum _{\alpha \in \mathbb {N} _{0}^{n}}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}.} 
   
   In fact, for a smooth enough function, we have the similar Taylor expansion  
  
    
      
        f 
        ( 
        x 
        + 
        h 
        ) 
        = 
        
          ∑ 
          
            
              | 
             
            α 
            
              | 
             
            ≤ 
            n 
           
         
        
          
            
              
                
                  ∂ 
                  
                    α 
                   
                 
                f 
                ( 
                x 
                ) 
               
              
                α 
                ! 
               
             
           
          
            h 
            
              α 
             
           
         
        + 
        
          R 
          
            n 
           
         
        ( 
        x 
        , 
        h 
        ) 
        , 
       
     
    {\displaystyle f(x+h)=\sum _{|\alpha |\leq n}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}+R_{n}(x,h),} 
   
   where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula (with integral remainder), one gets 
  
    
      
        
          R 
          
            n 
           
         
        ( 
        x 
        , 
        h 
        ) 
        = 
        ( 
        n 
        + 
        1 
        ) 
        
          ∑ 
          
            
              | 
             
            α 
            
              | 
             
            = 
            n 
            + 
            1 
           
         
        
          
            
              h 
              
                α 
               
             
            
              α 
              ! 
             
           
         
        
          ∫ 
          
            0 
           
          
            1 
           
         
        ( 
        1 
        − 
        t 
        
          ) 
          
            n 
           
         
        
          ∂ 
          
            α 
           
         
        f 
        ( 
        x 
        + 
        t 
        h 
        ) 
         
        d 
        t 
        . 
       
     
    {\displaystyle R_{n}(x,h)=(n+1)\sum _{|\alpha |=n+1}{\frac {h^{\alpha }}{\alpha !}}\int _{0}^{1}(1-t)^{n}\partial ^{\alpha }f(x+th)\,dt.} 
   
  
General linear partial differential operator  
A formal linear 
  
    
      
        N 
       
     
    {\textstyle N} 
   
  -th order partial differential operator in 
  
    
      
        n 
       
     
    {\textstyle n} 
   
   variables is written as 
  
    
      
        P 
        ( 
        ∂ 
        ) 
        = 
        
          ∑ 
          
            
              | 
             
            α 
            
              | 
             
            ≤ 
            N 
           
         
        
          
            a 
            
              α 
             
           
          ( 
          x 
          ) 
          
            ∂ 
            
              α 
             
           
         
        . 
       
     
    {\displaystyle P(\partial )=\sum _{|\alpha |\leq N}{a_{\alpha }(x)\partial ^{\alpha }}.} 
   
  
Integration by parts  
For smooth functions with compact support  in a bounded domain 
  
    
      
        Ω 
        ⊂ 
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \Omega \subset \mathbb {R} ^{n}} 
   
   one has 
  
    
      
        
          ∫ 
          
            Ω 
           
         
        u 
        ( 
        
          ∂ 
          
            α 
           
         
        v 
        ) 
         
        d 
        x 
        = 
        ( 
        − 
        1 
        
          ) 
          
            
              | 
             
            α 
            
              | 
             
           
         
        
          ∫ 
          
            Ω 
           
         
        
          ( 
          
            ∂ 
            
              α 
             
           
          u 
          ) 
          v 
           
          d 
          x 
         
        . 
       
     
    {\displaystyle \int _{\Omega }u(\partial ^{\alpha }v)\,dx=(-1)^{|\alpha |}\int _{\Omega }{(\partial ^{\alpha }u)v\,dx}.} 
   
   This formula is used for the definition of distributions  and weak derivatives .  
If 
  
    
      
        α 
        , 
        β 
        ∈ 
        
          
            N 
           
          
            0 
           
          
            n 
           
         
       
     
    {\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} 
   
   are multi-indices and 
  
    
      
        x 
        = 
        ( 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        ) 
       
     
    {\displaystyle x=(x_{1},\ldots ,x_{n})} 
   
  , then
  
    
      
        
          ∂ 
          
            α 
           
         
        
          x 
          
            β 
           
         
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        β 
                        ! 
                       
                      
                        ( 
                        β 
                        − 
                        α 
                        ) 
                        ! 
                       
                     
                   
                  
                    x 
                    
                      β 
                      − 
                      α 
                     
                   
                 
                
                  
                    if 
                   
                    
                  α 
                  ≤ 
                  β 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    otherwise. 
                   
                 
               
             
             
           
         
       
     
    {\displaystyle \partial ^{\alpha }x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\text{if}}~\alpha \leq \beta ,\\0&{\text{otherwise.}}\end{cases}}} 
   
  
The proof follows from the power rule  for the ordinary derivative ; if α  and β  are in 
  
    
      
        { 
        0 
        , 
        1 
        , 
        2 
        , 
        … 
        } 
       
     
    {\textstyle \{0,1,2,\ldots \}} 
   
  , then
  
    
      
        
          
            
              d 
              
                α 
               
             
            
              d 
              
                x 
                
                  α 
                 
               
             
           
         
        
          x 
          
            β 
           
         
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        β 
                        ! 
                       
                      
                        ( 
                        β 
                        − 
                        α 
                        ) 
                        ! 
                       
                     
                   
                  
                    x 
                    
                      β 
                      − 
                      α 
                     
                   
                 
                
                  
                    
                      if 
                     
                   
                   
                   
                  α 
                  ≤ 
                  β 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    
                      otherwise. 
                     
                   
                 
               
             
             
           
         
       
     
    {\displaystyle {\frac {d^{\alpha }}{dx^{\alpha }}}x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\hbox{if}}\,\,\alpha \leq \beta ,\\0&{\hbox{otherwise.}}\end{cases}}} 
   
     1 
Suppose 
  
    
      
        α 
        = 
        ( 
        
          α 
          
            1 
           
         
        , 
        … 
        , 
        
          α 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})} 
   
  , 
  
    
      
        β 
        = 
        ( 
        
          β 
          
            1 
           
         
        , 
        … 
        , 
        
          β 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \beta =(\beta _{1},\ldots ,\beta _{n})} 
   
  , and 
  
    
      
        x 
        = 
        ( 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        ) 
       
     
    {\displaystyle x=(x_{1},\ldots ,x_{n})} 
   
  . Then we have that
  
    
      
        
          
            
              
                
                  ∂ 
                  
                    α 
                   
                 
                
                  x 
                  
                    β 
                   
                 
               
              
                 
                = 
                
                  
                    
                      ∂ 
                      
                        | 
                        α 
                        | 
                       
                     
                    
                      ∂ 
                      
                        x 
                        
                          1 
                         
                        
                          
                            α 
                            
                              1 
                             
                           
                         
                       
                      ⋯ 
                      ∂ 
                      
                        x 
                        
                          n 
                         
                        
                          
                            α 
                            
                              n 
                             
                           
                         
                       
                     
                   
                 
                
                  x 
                  
                    1 
                   
                  
                    
                      β 
                      
                        1 
                       
                     
                   
                 
                ⋯ 
                
                  x 
                  
                    n 
                   
                  
                    
                      β 
                      
                        n 
                       
                     
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ∂ 
                      
                        
                          α 
                          
                            1 
                           
                         
                       
                     
                    
                      ∂ 
                      
                        x 
                        
                          1 
                         
                        
                          
                            α 
                            
                              1 
                             
                           
                         
                       
                     
                   
                 
                
                  x 
                  
                    1 
                   
                  
                    
                      β 
                      
                        1 
                       
                     
                   
                 
                ⋯ 
                
                  
                    
                      ∂ 
                      
                        
                          α 
                          
                            n 
                           
                         
                       
                     
                    
                      ∂ 
                      
                        x 
                        
                          n 
                         
                        
                          
                            α 
                            
                              n 
                             
                           
                         
                       
                     
                   
                 
                
                  x 
                  
                    n 
                   
                  
                    
                      β 
                      
                        n 
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\partial ^{\alpha }x^{\beta }&={\frac {\partial ^{\vert \alpha \vert }}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}x_{1}^{\beta _{1}}\cdots x_{n}^{\beta _{n}}\\&={\frac {\partial ^{\alpha _{1}}}{\partial x_{1}^{\alpha _{1}}}}x_{1}^{\beta _{1}}\cdots {\frac {\partial ^{\alpha _{n}}}{\partial x_{n}^{\alpha _{n}}}}x_{n}^{\beta _{n}}.\end{aligned}}} 
   
  
For each 
  
    
      
        i 
       
     
    {\textstyle i} 
   
   in 
  
    
      
        { 
        1 
        , 
        … 
        , 
        n 
        } 
       
     
    {\textstyle \{1,\ldots ,n\}} 
   
  , the function 
  
    
      
        
          x 
          
            i 
           
          
            
              β 
              
                i 
               
             
           
         
       
     
    {\displaystyle x_{i}^{\beta _{i}}} 
   
   only depends on 
  
    
      
        
          x 
          
            i 
           
         
       
     
    {\displaystyle x_{i}} 
   
  . In the above, each partial differentiation 
  
    
      
        ∂ 
        
          / 
         
        ∂ 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle \partial /\partial x_{i}} 
   
   therefore reduces to the corresponding ordinary differentiation 
  
    
      
        d 
        
          / 
         
        d 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle d/dx_{i}} 
   
  . Hence, from equation (1  ), it follows that 
  
    
      
        
          ∂ 
          
            α 
           
         
        
          x 
          
            β 
           
         
       
     
    {\displaystyle \partial ^{\alpha }x^{\beta }} 
   
   vanishes if 
  
    
      
        
          α 
          
            i 
           
         
        > 
        
          β 
          
            i 
           
         
       
     
    {\textstyle \alpha _{i}>\beta _{i}} 
   
   for at least one 
  
    
      
        i 
       
     
    {\textstyle i} 
   
   in 
  
    
      
        { 
        1 
        , 
        … 
        , 
        n 
        } 
       
     
    {\textstyle \{1,\ldots ,n\}} 
   
  . If this is not the case, i.e., if 
  
    
      
        α 
        ≤ 
        β 
       
     
    {\textstyle \alpha \leq \beta } 
   
   as multi-indices, then
  
    
      
        
          
            
              d 
              
                
                  α 
                  
                    i 
                   
                 
               
             
            
              d 
              
                x 
                
                  i 
                 
                
                  
                    α 
                    
                      i 
                     
                   
                 
               
             
           
         
        
          x 
          
            i 
           
          
            
              β 
              
                i 
               
             
           
         
        = 
        
          
            
              
                β 
                
                  i 
                 
               
              ! 
             
            
              ( 
              
                β 
                
                  i 
                 
               
              − 
              
                α 
                
                  i 
                 
               
              ) 
              ! 
             
           
         
        
          x 
          
            i 
           
          
            
              β 
              
                i 
               
             
            − 
            
              α 
              
                i 
               
             
           
         
       
     
    {\displaystyle {\frac {d^{\alpha _{i}}}{dx_{i}^{\alpha _{i}}}}x_{i}^{\beta _{i}}={\frac {\beta _{i}!}{(\beta _{i}-\alpha _{i})!}}x_{i}^{\beta _{i}-\alpha _{i}}} 
   
  
for each 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
   and the theorem follows. Q.E.D. 
^   Reed, M.; Simon, B. (1980). Methods of Modern Mathematical Physics: Functional Analysis I  (Revised and enlarged ed.). San Diego: Academic Press. p. 319. ISBN  0-12-585050-6  .  
 
  
Saint Raymond, Xavier (1991). Elementary Introduction to the Theory of Pseudodifferential Operators . Chap 1.1 . CRC Press. ISBN  0-8493-7158-9   
This article incorporates material from multi-index derivative of a power on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .