Quantum theory of interacting electron gas
condensed matter physics , Lindhard theory [ 1] electric field screening  by electrons in a solid. It is based on quantum mechanics  (first-order perturbation theory) and the random phase approximation . It is named after Danish physicist Jens Lindhard , who first developed the theory in 1954.[ 2] [ 3] [ 4] 
Thomas–Fermi screening , plasma oscillations  and Friedel oscillations  can be derived as a special case of the more general Lindhard formula. In particular, Thomas–Fermi screening is the limit of the Lindhard formula when the wavevector (the reciprocal of the length-scale of interest) is much smaller than the Fermi wavevector, i.e. the long-distance limit.[ 1] 
This article uses cgs-Gaussian units .
Static Lindhard function 
  
    
      
        F 
        ( 
        x 
        ) 
       
     
    {\displaystyle F(x)} 
   
 
  
    
      
        x 
        = 
        1 
       
     
    {\displaystyle x=1} 
   
  The term 
  
    
      
        χ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
        = 
        
          ∑ 
          
            
              k 
             
           
         
        
          
            
              
                f 
                
                  
                    k 
                    + 
                    q 
                   
                 
               
              − 
              
                f 
                
                  
                    k 
                   
                 
               
             
            
              ℏ 
              ( 
              ω 
              + 
              i 
              δ 
              ) 
              + 
              
                E 
                
                  
                    k 
                   
                  + 
                  q 
                 
               
              − 
              
                E 
                
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle \chi (\mathbf {q} ,\omega )=\sum _{\mathbf {k} }{\frac {f_{\mathbf {k+q} }-f_{\mathbf {k} }}{\hbar (\omega +i\delta )+E_{\mathbf {k} +q}-E_{\mathbf {k} }}}} 
   
 is a response function  known as Lindhard function. Here 
  
    
      
        
          f 
          
            
              k 
             
           
         
       
     
    {\displaystyle f_{\mathbf {k} }} 
   
 Fermi–Dirac distribution function  for electrons in thermodynamic equilibrium, 
  
    
      
        
          E 
          
            
              k 
             
           
         
        = 
        
          ℏ 
          
            2 
           
         
        
          k 
          
            2 
           
         
        
          / 
         
        2 
        m 
       
     
    {\displaystyle E_{\mathbf {k} }=\hbar ^{2}k^{2}/2m} 
   
 
  
    
      
        
          k 
         
       
     
    {\displaystyle \mathbf {k} } 
   
 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
 
  
    
      
        δ 
       
     
    {\displaystyle \delta } 
   
 
Zero temperature functions [ edit ] At zero temperature, 
  
    
      
        
          f 
          
            
              k 
             
           
         
        ( 
        T 
        = 
        0 
        ) 
        = 
        Θ 
        ( 
        
          k 
          
            
              F 
             
           
         
        − 
        
          | 
         
        
          k 
         
        
          | 
         
        ) 
       
     
    {\displaystyle f_{\mathbf {k} }(T=0)=\Theta (k_{\mathrm {F} }-|\mathbf {k} |)} 
   
 Heaviside step function , where 
  
    
      
        
          k 
          
            
              F 
             
           
         
       
     
    {\displaystyle k_{\mathbf {F} }} 
   
 Fermi energy  
  
    
      
        
          E 
          
            
              F 
             
           
         
        = 
        
          ℏ 
          
            2 
           
         
        
          k 
          
            
              F 
             
           
          
            2 
           
         
        
          / 
         
        2 
        m 
       
     
    {\displaystyle E_{\mathrm {F} }=\hbar ^{2}k_{\mathrm {F} }^{2}/2m} 
   
 analytic continuation , resulting in 
  
    
      
        χ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
        = 
        
          
            F 
           
         
        ( 
        
          | 
         
        
          q 
         
        
          | 
         
        
          / 
         
        2 
        
          k 
          
            
              F 
             
           
         
        , 
        i 
        ℏ 
        ( 
        ω 
        + 
        i 
        δ 
        ) 
        
          / 
         
        4 
        
          E 
          
            
              F 
             
           
         
        ) 
       
     
    {\displaystyle \chi (\mathbf {q} ,\omega )={\mathcal {F}}(|\mathbf {q} |/2k_{\mathrm {F} },i\hbar (\omega +i\delta )/4E_{\mathrm {F} })} 
   
 [ 5] 
  
    
      
        
          
            F 
           
         
        ( 
        x 
        , 
        y 
        ) 
        = 
        
          
            1 
            2 
           
         
        + 
        
          
            1 
            
              8 
              x 
             
           
         
        
          [ 
          
            1 
            − 
            
              
                ( 
                
                  x 
                  − 
                  
                    
                      y 
                      x 
                     
                   
                 
                ) 
               
              
                2 
               
             
           
          ] 
         
        log 
         
        
          | 
          
            
              
                x 
                − 
                y 
                
                  / 
                 
                x 
                + 
                1 
               
              
                x 
                − 
                y 
                
                  / 
                 
                x 
                − 
                1 
               
             
           
          | 
         
        + 
        
          
            1 
            
              8 
              x 
             
           
         
        
          [ 
          
            1 
            − 
            
              
                ( 
                
                  x 
                  + 
                  
                    
                      y 
                      x 
                     
                   
                 
                ) 
               
              
                2 
               
             
           
          ] 
         
        log 
         
        
          | 
          
            
              
                x 
                + 
                y 
                
                  / 
                 
                x 
                + 
                1 
               
              
                x 
                + 
                y 
                
                  / 
                 
                x 
                − 
                1 
               
             
           
          | 
         
        . 
       
     
    {\displaystyle {\mathcal {F}}(x,y)={\frac {1}{2}}+{\frac {1}{8x}}\left[1-\left(x-{\frac {y}{x}}\right)^{2}\right]\log \left|{\frac {x-y/x+1}{x-y/x-1}}\right|+{\frac {1}{8x}}\left[1-\left(x+{\frac {y}{x}}\right)^{2}\right]\log \left|{\frac {x+y/x+1}{x+y/x-1}}\right|.} 
   
 In the static limit, when 
  
    
      
        ω 
        → 
        0 
       
     
    {\displaystyle \omega \to 0} 
   
 
  
    
      
        χ 
        ( 
        
          q 
         
        , 
        0 
        ) 
        = 
        
          
            F 
           
         
        ( 
        
          | 
         
        
          q 
         
        
          | 
         
        
          / 
         
        2 
        
          k 
          
            
              F 
             
           
         
        , 
        0 
        ) 
        = 
        F 
        ( 
        
          | 
         
        
          q 
         
        
          | 
         
        
          / 
         
        2 
        
          k 
          
            
              F 
             
           
         
        ) 
       
     
    {\displaystyle \chi (\mathbf {q} ,0)={\mathcal {F}}(|\mathbf {q} |/2k_{\mathrm {F} },0)=F(|\mathbf {q} |/2k_{\mathbf {F} })} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            1 
            2 
           
         
        + 
        
          
            
              1 
              − 
              
                x 
                
                  2 
                 
               
             
            
              4 
              x 
             
           
         
        log 
         
        
          | 
          
            
              
                x 
                + 
                1 
               
              
                x 
                − 
                1 
               
             
           
          | 
         
       
     
    {\displaystyle F(x)={\frac {1}{2}}+{\frac {1-x^{2}}{4x}}\log \left|{\frac {x+1}{x-1}}\right|} 
   
 is the (static) Lindhard function.[ 6] 
  
    
      
        x 
        = 
        1 
       
     
    {\displaystyle x=1} 
   
 
  
    
      
        F 
        ( 
        x 
        → 
        0 
        ) 
        = 
        1 
       
     
    {\displaystyle F(x\to 0)=1} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
       
     
    {\displaystyle F(x)} 
   
 jellium  when using Hartree–Fock method .[ 7] 
The electron-electron Coulomb potential  
  
    
      
        V 
        ( 
        
          r 
         
        ) 
        = 
        
          e 
          
            2 
           
         
        
          / 
         
        
          | 
         
        
          r 
         
        
          | 
         
       
     
    {\displaystyle V(\mathbf {r} )=e^{2}/|\mathbf {r} |} 
   
 e  is the elementary charge , can be written in Fourier space as 
  
    
      
        
          V 
          
            
              q 
             
           
         
        = 
        4 
        π 
        
          e 
          
            2 
           
         
        
          / 
         
        
          | 
         
        
          q 
         
        
          
            | 
           
          
            2 
           
         
       
     
    {\displaystyle V_{\mathbf {q} }=4\pi e^{2}/|\mathbf {q} |^{2}} 
   
 
  
    
      
        
          q 
         
       
     
    {\displaystyle \mathbf {q} } 
   
 
  
    
      
        
          V 
          
            
              e 
              f 
              f 
             
           
         
        ( 
        
          q 
         
        ) 
        = 
        
          
            
              V 
              
                
                  q 
                 
               
             
            
              ϵ 
              ( 
              
                q 
               
              ) 
             
           
         
        . 
       
     
    {\displaystyle V_{\mathrm {eff} }(\mathbf {q} )={\frac {V_{\mathbf {q} }}{\epsilon (\mathbf {q} )}}.} 
   
 The Lindhard formula for the longitudinal dielectric function  is then given by
  
    
      
        ϵ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        χ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
        , 
       
     
    {\displaystyle \epsilon (\mathbf {q} ,\omega )=1-V_{\mathbf {q} }\chi (\mathbf {q} ,\omega ),} 
   
 where 
  
    
      
        χ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
       
     
    {\displaystyle \chi (\mathbf {q} ,\omega )} 
   
 
This Lindhard formula is valid also for nonequilibrium distribution functions. It can be obtained by first-order perturbation theory and the random phase approximation  (RPA).
To understand the Lindhard formula, consider some limiting cases in 2 and 3 dimensions. The 1-dimensional case is also considered in other ways.
Long wavelength limit [ edit ] In the long wavelength limit (
  
    
      
        
          q 
         
        → 
        0 
       
     
    {\displaystyle \mathbf {q} \to 0} 
   
 
  
    
      
        ϵ 
        ( 
        
          q 
         
        = 
        0 
        , 
        ω 
        ) 
        ≈ 
        1 
        − 
        
          
            
              ω 
              
                
                  p 
                  l 
                 
               
              
                2 
               
             
            
              ω 
              
                2 
               
             
           
         
        , 
       
     
    {\displaystyle \epsilon (\mathbf {q} =0,\omega )\approx 1-{\frac {\omega _{\rm {pl}}^{2}}{\omega ^{2}}},} 
   
 where 
  
    
      
        
          ω 
          
            
              p 
              l 
             
           
          
            2 
           
         
        = 
        
          
            
              4 
              π 
              
                e 
                
                  2 
                 
               
              N 
             
            
              
                L 
                
                  3 
                 
               
              m 
             
           
         
       
     
    {\displaystyle \omega _{\rm {pl}}^{2}={\frac {4\pi e^{2}N}{L^{3}m}}} 
   
 plasma frequency  (in SI units, replace the factor 
  
    
      
        4 
        π 
       
     
    {\displaystyle 4\pi } 
   
 
  
    
      
        1 
        
          / 
         
        
          ϵ 
          
            0 
           
         
       
     
    {\displaystyle 1/\epsilon _{0}} 
   
 
  
    
      
        
          ω 
          
            
              p 
              l 
             
           
          
            2 
           
         
        ( 
        
          q 
         
        ) 
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
              n 
              q 
             
            
              ϵ 
              m 
             
           
         
       
     
    {\displaystyle \omega _{\rm {pl}}^{2}(\mathbf {q} )={\frac {2\pi e^{2}nq}{\epsilon m}}} 
   
 This result recovers the plasma oscillations  from the classical dielectric function from Drude model  and from quantum mechanical free electron model .
Derivation in 3D 
For the denominator of the Lindhard formula, we get
  
    
      
        
          E 
          
            
              k 
             
            + 
            
              q 
             
           
         
        − 
        
          E 
          
            
              k 
             
           
         
        = 
        
          
            
              ℏ 
              
                2 
               
             
            
              2 
              m 
             
           
         
        ( 
        
          k 
          
            2 
           
         
        + 
        2 
        
          k 
         
        ⋅ 
        
          q 
         
        + 
        
          q 
          
            2 
           
         
        ) 
        − 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
                
                  2 
                 
               
             
            
              2 
              m 
             
           
         
        ≃ 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
               
              ⋅ 
              
                q 
               
             
            m 
           
         
       
     
    {\displaystyle E_{\mathbf {k} +\mathbf {q} }-E_{\mathbf {k} }={\frac {\hbar ^{2}}{2m}}(k^{2}+2\mathbf {k} \cdot \mathbf {q} +q^{2})-{\frac {\hbar ^{2}k^{2}}{2m}}\simeq {\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}} 
   
 and for the numerator of the Lindhard formula, we get
  
    
      
        
          f 
          
            
              k 
             
            + 
            
              q 
             
           
         
        − 
        
          f 
          
            
              k 
             
           
         
        ≃ 
        
          q 
         
        ⋅ 
        
          ∇ 
          
            
              k 
             
           
         
        
          f 
          
            
              k 
             
           
         
       
     
    {\displaystyle f_{\mathbf {k} +\mathbf {q} }-f_{\mathbf {k} }\simeq \mathbf {q} \cdot \nabla _{\mathbf {k} }f_{\mathbf {k} }} 
   
 Inserting these into the Lindhard formula and taking the 
  
    
      
        δ 
        → 
        0 
       
     
    {\displaystyle \delta \to 0} 
   
 
  
    
      
        
          
            
              
                ϵ 
                ( 
                
                  q 
                 
                = 
                0 
                , 
                
                  ω 
                  
                    0 
                   
                 
                ) 
               
              
                ≃ 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    
                      
                        q 
                        
                          i 
                         
                       
                      
                        
                          
                            ∂ 
                            
                              f 
                              
                                
                                  k 
                                 
                               
                             
                           
                          
                            ∂ 
                            
                              k 
                              
                                i 
                               
                             
                           
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                      − 
                      
                        
                          
                            
                              ℏ 
                              
                                2 
                               
                             
                            
                              k 
                             
                            ⋅ 
                            
                              q 
                             
                           
                          m 
                         
                       
                     
                   
                 
               
             
            
              
                ≃ 
                1 
                + 
                
                  
                    
                      V 
                      
                        
                          q 
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
                ( 
                1 
                + 
                
                  
                    
                      ℏ 
                      
                        k 
                       
                      ⋅ 
                      
                        q 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                ) 
               
             
            
              
                ≃ 
                1 
                + 
                
                  
                    
                      V 
                      
                        
                          q 
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      ℏ 
                      
                        k 
                       
                      ⋅ 
                      
                        q 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  
                    
                      q 
                      
                        2 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                   
                 
                
                  
                    f 
                    
                      
                        k 
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  
                    
                      
                        q 
                        
                          2 
                         
                       
                      N 
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  
                    
                      4 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      
                        q 
                        
                          2 
                         
                       
                      
                        L 
                        
                          3 
                         
                       
                     
                   
                 
                
                  
                    
                      
                        q 
                        
                          2 
                         
                       
                      N 
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  
                    
                      ω 
                      
                        
                          p 
                          l 
                         
                       
                      
                        2 
                       
                     
                    
                      ω 
                      
                        0 
                       
                      
                        2 
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{2}\epsilon (\mathbf {q} =0,\omega _{0})&\simeq 1+V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}{\hbar \omega _{0}-{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}}\\&\simeq 1+{\frac {V_{\mathbf {q} }}{\hbar \omega _{0}}}\sum _{\mathbf {k} ,i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}(1+{\frac {\hbar \mathbf {k} \cdot \mathbf {q} }{m\omega _{0}}})\\&\simeq 1+{\frac {V_{\mathbf {q} }}{\hbar \omega _{0}}}\sum _{\mathbf {k} ,i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}{\frac {\hbar \mathbf {k} \cdot \mathbf {q} }{m\omega _{0}}}\\&=1-V_{\mathbf {q} }{\frac {q^{2}}{m\omega _{0}^{2}}}\sum _{\mathbf {k} }{f_{\mathbf {k} }}\\&=1-V_{\mathbf {q} }{\frac {q^{2}N}{m\omega _{0}^{2}}}\\&=1-{\frac {4\pi e^{2}}{\epsilon q^{2}L^{3}}}{\frac {q^{2}N}{m\omega _{0}^{2}}}\\&=1-{\frac {\omega _{\rm {pl}}^{2}}{\omega _{0}^{2}}}.\end{alignedat}}} 
   
 where we used 
  
    
      
        
          E 
          
            
              k 
             
           
         
        = 
        ℏ 
        
          ω 
          
            
              k 
             
           
         
       
     
    {\displaystyle E_{\mathbf {k} }=\hbar \omega _{\mathbf {k} }} 
   
 
  
    
      
        
          V 
          
            
              q 
             
           
         
        = 
        
          
            
              4 
              π 
              
                e 
                
                  2 
                 
               
             
            
              ϵ 
              
                q 
                
                  2 
                 
               
              
                L 
                
                  3 
                 
               
             
           
         
       
     
    {\displaystyle V_{\mathbf {q} }={\frac {4\pi e^{2}}{\epsilon q^{2}L^{3}}}} 
   
 
Derivation in 2D
First, consider the long wavelength limit (
  
    
      
        q 
        → 
        0 
       
     
    {\displaystyle q\to 0} 
   
 
For the denominator of the Lindhard formula,
  
    
      
        
          E 
          
            
              k 
             
            + 
            
              q 
             
           
         
        − 
        
          E 
          
            
              k 
             
           
         
        = 
        
          
            
              ℏ 
              
                2 
               
             
            
              2 
              m 
             
           
         
        ( 
        
          k 
          
            2 
           
         
        + 
        2 
        
          k 
         
        ⋅ 
        
          q 
         
        + 
        
          q 
          
            2 
           
         
        ) 
        − 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
                
                  2 
                 
               
             
            
              2 
              m 
             
           
         
        ≃ 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
               
              ⋅ 
              
                q 
               
             
            m 
           
         
       
     
    {\displaystyle E_{\mathbf {k} +\mathbf {q} }-E_{\mathbf {k} }={\frac {\hbar ^{2}}{2m}}(k^{2}+2\mathbf {k} \cdot \mathbf {q} +q^{2})-{\frac {\hbar ^{2}k^{2}}{2m}}\simeq {\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}} 
   
 and for the numerator,
  
    
      
        
          f 
          
            
              k 
             
            + 
            
              q 
             
           
         
        − 
        
          f 
          
            
              k 
             
           
         
        ≃ 
        
          q 
         
        ⋅ 
        
          ∇ 
          
            
              k 
             
           
         
        
          f 
          
            
              k 
             
           
         
       
     
    {\displaystyle f_{\mathbf {k} +\mathbf {q} }-f_{\mathbf {k} }\simeq \mathbf {q} \cdot \nabla _{\mathbf {k} }f_{\mathbf {k} }} 
   
 Inserting these into the Lindhard formula and taking the limit of 
  
    
      
        δ 
        → 
        0 
       
     
    {\displaystyle \delta \to 0} 
   
 
  
    
      
        
          
            
              
                ϵ 
                ( 
                0 
                , 
                ω 
                ) 
               
              
                ≃ 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    
                      
                        q 
                        
                          i 
                         
                       
                      
                        
                          
                            ∂ 
                            
                              f 
                              
                                
                                  k 
                                 
                               
                             
                           
                          
                            ∂ 
                            
                              k 
                              
                                i 
                               
                             
                           
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                      − 
                      
                        
                          
                            
                              ℏ 
                              
                                2 
                               
                             
                            
                              k 
                             
                            ⋅ 
                            
                              q 
                             
                           
                          m 
                         
                       
                     
                   
                 
               
             
            
              
                ≃ 
                1 
                + 
                
                  
                    
                      V 
                      
                        
                          q 
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
                ( 
                1 
                + 
                
                  
                    
                      ℏ 
                      
                        k 
                       
                      ⋅ 
                      
                        q 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                ) 
               
             
            
              
                ≃ 
                1 
                + 
                
                  
                    
                      V 
                      
                        
                          q 
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      ℏ 
                      
                        k 
                       
                      ⋅ 
                      
                        q 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                + 
                
                  
                    
                      V 
                      
                        
                          q 
                         
                       
                     
                    
                      ℏ 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
                2 
                ∫ 
                
                  d 
                  
                    2 
                   
                 
                k 
                ( 
                
                  
                    L 
                    
                      2 
                      π 
                     
                   
                 
                
                  ) 
                  
                    2 
                   
                 
                
                  ∑ 
                  
                    i 
                    , 
                    j 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      ℏ 
                      
                        k 
                        
                          j 
                         
                       
                      
                        q 
                        
                          j 
                         
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                + 
                
                  
                    
                      
                        V 
                        
                          
                            q 
                           
                         
                       
                      
                        L 
                        
                          2 
                         
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
                2 
                ∫ 
                
                  
                    
                      
                        d 
                        
                          2 
                         
                       
                      k 
                     
                    
                      ( 
                      2 
                      π 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    i 
                    , 
                    j 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    q 
                    
                      j 
                     
                   
                  
                    k 
                    
                      j 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                + 
                
                  
                    
                      
                        V 
                        
                          
                            q 
                           
                         
                       
                      
                        L 
                        
                          2 
                         
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    i 
                    , 
                    j 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    q 
                    
                      j 
                     
                   
                  2 
                  ∫ 
                  
                    
                      
                        
                          d 
                          
                            2 
                           
                         
                        k 
                       
                      
                        ( 
                        2 
                        π 
                        
                          ) 
                          
                            2 
                           
                         
                       
                     
                   
                  
                    k 
                    
                      j 
                     
                   
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            
                              k 
                             
                           
                         
                       
                      
                        ∂ 
                        
                          k 
                          
                            i 
                           
                         
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  
                    
                      
                        V 
                        
                          
                            q 
                           
                         
                       
                      
                        L 
                        
                          2 
                         
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
                
                  ∑ 
                  
                    i 
                    , 
                    j 
                   
                 
                
                  
                    q 
                    
                      i 
                     
                   
                  
                    q 
                    
                      j 
                     
                   
                  n 
                  
                    δ 
                    
                      i 
                      j 
                     
                   
                 
               
             
            
              
                = 
                1 
                − 
                
                  
                    
                      2 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      q 
                      
                        L 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                    
                      L 
                      
                        2 
                       
                     
                    
                      m 
                      
                        ω 
                        
                          0 
                         
                        
                          2 
                         
                       
                     
                   
                 
                
                  q 
                  
                    2 
                   
                 
                n 
               
             
            
              
                = 
                1 
                − 
                
                  
                    
                      
                        ω 
                        
                          
                            p 
                            l 
                           
                         
                        
                          2 
                         
                       
                      ( 
                      
                        q 
                       
                      ) 
                     
                    
                      ω 
                      
                        0 
                       
                      
                        2 
                       
                     
                   
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{2}\epsilon (0,\omega )&\simeq 1+V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}{\hbar \omega _{0}-{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}}\\&\simeq 1+{\frac {V_{\mathbf {q} }}{\hbar \omega _{0}}}\sum _{\mathbf {k} ,i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}(1+{\frac {\hbar \mathbf {k} \cdot \mathbf {q} }{m\omega _{0}}})\\&\simeq 1+{\frac {V_{\mathbf {q} }}{\hbar \omega _{0}}}\sum _{\mathbf {k} ,i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}{\frac {\hbar \mathbf {k} \cdot \mathbf {q} }{m\omega _{0}}}\\&=1+{\frac {V_{\mathbf {q} }}{\hbar \omega _{0}}}2\int d^{2}k({\frac {L}{2\pi }})^{2}\sum _{i,j}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}{\frac {\hbar k_{j}q_{j}}{m\omega _{0}}}\\&=1+{\frac {V_{\mathbf {q} }L^{2}}{m\omega _{0}^{2}}}2\int {\frac {d^{2}k}{(2\pi )^{2}}}\sum _{i,j}{q_{i}q_{j}k_{j}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}\\&=1+{\frac {V_{\mathbf {q} }L^{2}}{m\omega _{0}^{2}}}\sum _{i,j}{q_{i}q_{j}2\int {\frac {d^{2}k}{(2\pi )^{2}}}k_{j}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}\\&=1-{\frac {V_{\mathbf {q} }L^{2}}{m\omega _{0}^{2}}}\sum _{i,j}{q_{i}q_{j}n\delta _{ij}}\\&=1-{\frac {2\pi e^{2}}{\epsilon qL^{2}}}{\frac {L^{2}}{m\omega _{0}^{2}}}q^{2}n\\&=1-{\frac {\omega _{\rm {pl}}^{2}(\mathbf {q} )}{\omega _{0}^{2}}},\end{alignedat}}} 
   
 where we used 
  
    
      
        
          E 
          
            
              k 
             
           
         
        = 
        ℏ 
        
          ϵ 
          
            
              k 
             
           
         
       
     
    {\displaystyle E_{\mathbf {k} }=\hbar \epsilon _{\mathbf {k} }} 
   
 
  
    
      
        
          V 
          
            
              q 
             
           
         
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            
              ϵ 
              q 
              
                L 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle V_{\mathbf {q} }={\frac {2\pi e^{2}}{\epsilon qL^{2}}}} 
   
 
  
    
      
        
          ω 
          
            
              p 
              l 
             
           
          
            2 
           
         
        ( 
        
          q 
         
        ) 
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
              n 
              q 
             
            
              ϵ 
              m 
             
           
         
       
     
    {\displaystyle \omega _{\rm {pl}}^{2}(\mathbf {q} )={\frac {2\pi e^{2}nq}{\epsilon m}}} 
   
 
 Consider the static limit (
  
    
      
        ω 
        + 
        i 
        δ 
        → 
        0 
       
     
    {\displaystyle \omega +i\delta \to 0} 
   
 
The Lindhard formula becomes
  
    
      
        ϵ 
        ( 
        
          q 
         
        , 
        ω 
        = 
        0 
        ) 
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
           
         
        
          
            
              
                f 
                
                  
                    k 
                   
                  + 
                  
                    q 
                   
                 
               
              − 
              
                f 
                
                  
                    k 
                   
                 
               
             
            
              
                E 
                
                  
                    k 
                   
                  + 
                  
                    q 
                   
                 
               
              − 
              
                E 
                
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle \epsilon (\mathbf {q} ,\omega =0)=1-V_{\mathbf {q} }\sum _{\mathbf {k} }{\frac {f_{\mathbf {k} +\mathbf {q} }-f_{\mathbf {k} }}{E_{\mathbf {k} +\mathbf {q} }-E_{\mathbf {k} }}}} 
   
 Inserting the above equalities for the denominator and numerator, we obtain
  
    
      
        ϵ 
        ( 
        
          q 
         
        , 
        0 
        ) 
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
            , 
            i 
           
         
        
          
            
              
                q 
                
                  i 
                 
               
              
                
                  
                    ∂ 
                    f 
                   
                  
                    ∂ 
                    
                      k 
                      
                        i 
                       
                     
                   
                 
               
             
            
              
                
                  ℏ 
                  
                    2 
                   
                 
                
                  k 
                 
                ⋅ 
                
                  q 
                 
               
              m 
             
           
         
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
            , 
            i 
           
         
        
          
            
              
                q 
                
                  i 
                 
               
              
                
                  
                    ∂ 
                    f 
                   
                  
                    ∂ 
                    
                      k 
                      
                        i 
                       
                     
                   
                 
               
             
            
              
                
                  ℏ 
                  
                    2 
                   
                 
                
                  k 
                 
                ⋅ 
                
                  q 
                 
               
              m 
             
           
         
       
     
    {\displaystyle \epsilon (\mathbf {q} ,0)=1-V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}{\frac {\partial f}{\partial k_{i}}}}{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}=1-V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}{\frac {\partial f}{\partial k_{i}}}}{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}} 
   
 Assuming a thermal equilibrium Fermi–Dirac carrier distribution, we get
  
    
      
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                
                  k 
                  
                    i 
                   
                 
               
             
           
         
        = 
        − 
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                μ 
               
             
           
          
            
              
                ∂ 
                
                  E 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                
                  k 
                  
                    i 
                   
                 
               
             
           
         
        = 
        − 
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            k 
            
              i 
             
           
          
            
              
                ℏ 
                
                  2 
                 
               
              m 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                μ 
               
             
           
         
       
     
    {\displaystyle \sum _{i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}=-\sum _{i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}{\frac {\partial E_{\mathbf {k} }}{\partial k_{i}}}}=-\sum _{i}{q_{i}k_{i}{\frac {\hbar ^{2}}{m}}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}}} 
   
 here, we used 
  
    
      
        
          E 
          
            
              k 
             
           
         
        = 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
                
                  2 
                 
               
             
            
              2 
              m 
             
           
         
       
     
    {\displaystyle E_{\mathbf {k} }={\frac {\hbar ^{2}k^{2}}{2m}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                E 
                
                  
                    k 
                   
                 
               
             
            
              ∂ 
              
                k 
                
                  i 
                 
               
             
           
         
        = 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              
                k 
                
                  i 
                 
               
             
            m 
           
         
       
     
    {\displaystyle {\frac {\partial E_{\mathbf {k} }}{\partial k_{i}}}={\frac {\hbar ^{2}k_{i}}{m}}} 
   
 
Therefore, 
  
    
      
        
          
            
              
                ϵ 
                ( 
                
                  q 
                 
                , 
                0 
                ) 
               
              
                = 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    
                      
                        q 
                        
                          i 
                         
                       
                      
                        k 
                        
                          i 
                         
                       
                      
                        
                          
                            ℏ 
                            
                              2 
                             
                           
                          m 
                         
                       
                      
                        
                          
                            ∂ 
                            
                              f 
                              
                                
                                  k 
                                 
                               
                             
                           
                          
                            ∂ 
                            μ 
                           
                         
                       
                     
                    
                      
                        
                          ℏ 
                          
                            2 
                           
                         
                        
                          k 
                         
                        ⋅ 
                        
                          q 
                         
                       
                      m 
                     
                   
                 
                = 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                   
                 
                
                  
                    
                      ∂ 
                      
                        f 
                        
                          
                            k 
                           
                         
                       
                     
                    
                      ∂ 
                      μ 
                     
                   
                 
                = 
                1 
                + 
                
                  
                    
                      4 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      
                        q 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                    ∂ 
                    
                      ∂ 
                      μ 
                     
                   
                 
                
                  
                    1 
                    
                      L 
                      
                        3 
                       
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                   
                 
                
                  
                    f 
                    
                      
                        k 
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                + 
                
                  
                    
                      4 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      
                        q 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                    ∂ 
                    
                      ∂ 
                      μ 
                     
                   
                 
                
                  
                    N 
                    
                      L 
                      
                        3 
                       
                     
                   
                 
                = 
                1 
                + 
                
                  
                    
                      4 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      
                        q 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                    
                      ∂ 
                      n 
                     
                    
                      ∂ 
                      μ 
                     
                   
                 
                ≡ 
                1 
                + 
                
                  
                    
                      κ 
                      
                        2 
                       
                     
                    
                      q 
                      
                        2 
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{2}\epsilon (\mathbf {q} ,0)&=1+V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}k_{i}{\frac {\hbar ^{2}}{m}}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}}{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}=1+V_{\mathbf {q} }\sum _{\mathbf {k} }{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}=1+{\frac {4\pi e^{2}}{\epsilon q^{2}}}{\frac {\partial }{\partial \mu }}{\frac {1}{L^{3}}}\sum _{\mathbf {k} }{f_{\mathbf {k} }}\\&=1+{\frac {4\pi e^{2}}{\epsilon q^{2}}}{\frac {\partial }{\partial \mu }}{\frac {N}{L^{3}}}=1+{\frac {4\pi e^{2}}{\epsilon q^{2}}}{\frac {\partial n}{\partial \mu }}\equiv 1+{\frac {\kappa ^{2}}{q^{2}}}.\end{alignedat}}} 
   
 
Here, 
  
    
      
        κ 
       
     
    {\displaystyle \kappa } 
   
 
  
    
      
        κ 
        = 
        
          
            
              
                
                  4 
                  π 
                  
                    e 
                    
                      2 
                     
                   
                 
                ϵ 
               
             
            
              
                
                  ∂ 
                  n 
                 
                
                  ∂ 
                  μ 
                 
               
             
           
         
       
     
    {\displaystyle \kappa ={\sqrt {{\frac {4\pi e^{2}}{\epsilon }}{\frac {\partial n}{\partial \mu }}}}} 
   
 
Then, the 3D statically screened Coulomb potential is given by
  
    
      
        
          V 
          
            
              s 
             
           
         
        ( 
        
          q 
         
        , 
        ω 
        = 
        0 
        ) 
        ≡ 
        
          
            
              V 
              
                
                  q 
                 
               
             
            
              ϵ 
              ( 
              
                q 
               
              , 
              0 
              ) 
             
           
         
        = 
        
          
            
              
                4 
                π 
                
                  e 
                  
                    2 
                   
                 
               
              
                ϵ 
                
                  q 
                  
                    2 
                   
                 
                
                  L 
                  
                    3 
                   
                 
               
             
            
              
                
                  q 
                  
                    2 
                   
                 
                + 
                
                  κ 
                  
                    2 
                   
                 
               
              
                q 
                
                  2 
                 
               
             
           
         
        = 
        
          
            
              4 
              π 
              
                e 
                
                  2 
                 
               
             
            
              ϵ 
              
                L 
                
                  3 
                 
               
             
           
         
        
          
            1 
            
              
                q 
                
                  2 
                 
               
              + 
              
                κ 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle V_{\rm {s}}(\mathbf {q} ,\omega =0)\equiv {\frac {V_{\mathbf {q} }}{\epsilon (\mathbf {q} ,0)}}={\frac {\frac {4\pi e^{2}}{\epsilon q^{2}L^{3}}}{\frac {q^{2}+\kappa ^{2}}{q^{2}}}}={\frac {4\pi e^{2}}{\epsilon L^{3}}}{\frac {1}{q^{2}+\kappa ^{2}}}} 
   
 And the inverse Fourier transformation of this result gives
  
    
      
        
          V 
          
            
              s 
             
           
         
        ( 
        r 
        ) 
        = 
        
          ∑ 
          
            
              q 
             
           
         
        
          
            
              
                4 
                π 
                
                  e 
                  
                    2 
                   
                 
               
              
                
                  L 
                  
                    3 
                   
                 
                ( 
                
                  q 
                  
                    2 
                   
                 
                + 
                
                  κ 
                  
                    2 
                   
                 
                ) 
               
             
           
          
            e 
            
              i 
              
                q 
               
              ⋅ 
              
                r 
               
             
           
         
        = 
        
          
            
              e 
              
                2 
               
             
            r 
           
         
        
          e 
          
            − 
            κ 
            r 
           
         
       
     
    {\displaystyle V_{\rm {s}}(r)=\sum _{\mathbf {q} }{{\frac {4\pi e^{2}}{L^{3}(q^{2}+\kappa ^{2})}}e^{i\mathbf {q} \cdot \mathbf {r} }}={\frac {e^{2}}{r}}e^{-\kappa r}} 
   
 known as the Yukawa potential . Note that in this Fourier transformation, which is basically a sum over all  
  
    
      
        
          q 
         
       
     
    {\displaystyle \mathbf {q} } 
   
 
  
    
      
        
          | 
         
        
          q 
         
        
          | 
         
       
     
    {\displaystyle |\mathbf {q} |} 
   
 every  value of 
  
    
      
        
          q 
         
       
     
    {\displaystyle \mathbf {q} } 
   
 
Statically screened potential(upper curved surface) and Coulomb potential(lower curved surface) in three dimensions For a degenerated Fermi gas  (T =0), the Fermi energy  is given by
  
    
      
        
          E 
          
            
              F 
             
           
         
        = 
        
          
            
              ℏ 
              
                2 
               
             
            
              2 
              m 
             
           
         
        ( 
        3 
        
          π 
          
            2 
           
         
        n 
        
          ) 
          
            
              2 
              3 
             
           
         
       
     
    {\displaystyle E_{\rm {F}}={\frac {\hbar ^{2}}{2m}}(3\pi ^{2}n)^{\frac {2}{3}}} 
   
 So the density is 
  
    
      
        n 
        = 
        
          
            1 
            
              3 
              
                π 
                
                  2 
                 
               
             
           
         
        
          
            ( 
            
              
                
                  
                    2 
                    m 
                   
                  
                    ℏ 
                    
                      2 
                     
                   
                 
               
              
                E 
                
                  
                    F 
                   
                 
               
             
            ) 
           
          
            
              3 
              2 
             
           
         
       
     
    {\displaystyle n={\frac {1}{3\pi ^{2}}}\left({\frac {2m}{\hbar ^{2}}}E_{\rm {F}}\right)^{\frac {3}{2}}} 
   
 At T =0, 
  
    
      
        
          E 
          
            
              F 
             
           
         
        ≡ 
        μ 
       
     
    {\displaystyle E_{\rm {F}}\equiv \mu } 
   
 
  
    
      
        
          
            
              ∂ 
              n 
             
            
              ∂ 
              μ 
             
           
         
        = 
        
          
            3 
            2 
           
         
        
          
            n 
            
              E 
              
                
                  F 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial n}{\partial \mu }}={\frac {3}{2}}{\frac {n}{E_{\rm {F}}}}} 
   
 
Inserting this into the above 3D screening wave number equation, we obtain
  
    
      
        κ 
        = 
        
          
            
              
                
                  4 
                  π 
                  
                    e 
                    
                      2 
                     
                   
                 
                ϵ 
               
             
            
              
                
                  ∂ 
                  n 
                 
                
                  ∂ 
                  μ 
                 
               
             
           
         
        = 
        
          
            
              
                6 
                π 
                
                  e 
                  
                    2 
                   
                 
                n 
               
              
                ϵ 
                
                  E 
                  
                    
                      F 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \kappa ={\sqrt {{\frac {4\pi e^{2}}{\epsilon }}{\frac {\partial n}{\partial \mu }}}}={\sqrt {\frac {6\pi e^{2}n}{\epsilon E_{\rm {F}}}}}} 
   
  
This result recovers the 3D wave number from Thomas–Fermi screening .
For reference, Debye–Hückel screening  describes the non-degenerate limit case. The result is 
  
    
      
        κ 
        = 
        
          
            
              
                4 
                π 
                
                  e 
                  
                    2 
                   
                 
                n 
                β 
               
              ϵ 
             
           
         
       
     
    {\displaystyle \kappa ={\sqrt {\frac {4\pi e^{2}n\beta }{\epsilon }}}} 
   
 
In two dimensions, the screening wave number is
  
    
      
        κ 
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            ϵ 
           
         
        
          
            
              ∂ 
              n 
             
            
              ∂ 
              μ 
             
           
         
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            ϵ 
           
         
        
          
            m 
            
              
                ℏ 
                
                  2 
                 
               
              π 
             
           
         
        ( 
        1 
        − 
        
          e 
          
            − 
            
              ℏ 
              
                2 
               
             
            β 
            π 
            n 
            
              / 
             
            m 
           
         
        ) 
        = 
        
          
            
              2 
              m 
              
                e 
                
                  2 
                 
               
             
            
              
                ℏ 
                
                  2 
                 
               
              ϵ 
             
           
         
        
          f 
          
            k 
            = 
            0 
           
         
        . 
       
     
    {\displaystyle \kappa ={\frac {2\pi e^{2}}{\epsilon }}{\frac {\partial n}{\partial \mu }}={\frac {2\pi e^{2}}{\epsilon }}{\frac {m}{\hbar ^{2}\pi }}(1-e^{-\hbar ^{2}\beta \pi n/m})={\frac {2me^{2}}{\hbar ^{2}\epsilon }}f_{k=0}.} 
   
  
Note that this result is independent of n .
Derivation in 2D
Consider the static limit (
  
    
      
        ω 
        + 
        i 
        δ 
        → 
        0 
       
     
    {\displaystyle \omega +i\delta \to 0} 
   
 
  
    
      
        ϵ 
        ( 
        
          q 
         
        , 
        0 
        ) 
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
           
         
        
          
            
              
                f 
                
                  
                    k 
                   
                  − 
                  
                    q 
                   
                 
               
              − 
              
                f 
                
                  
                    k 
                   
                 
               
             
            
              
                E 
                
                  
                    k 
                   
                  − 
                  
                    q 
                   
                 
               
              − 
              
                E 
                
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle \epsilon (\mathbf {q} ,0)=1-V_{\mathbf {q} }\sum _{\mathbf {k} }{\frac {f_{\mathbf {k} -\mathbf {q} }-f_{\mathbf {k} }}{E_{\mathbf {k} -\mathbf {q} }-E_{\mathbf {k} }}}} 
   
 Inserting the above equalities for the denominator and numerator, we obtain
  
    
      
        ϵ 
        ( 
        
          q 
         
        , 
        0 
        ) 
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
            , 
            i 
           
         
        
          
            
              − 
              
                q 
                
                  i 
                 
               
              
                
                  
                    ∂ 
                    f 
                   
                  
                    ∂ 
                    
                      k 
                      
                        i 
                       
                     
                   
                 
               
             
            
              − 
              
                
                  
                    
                      ℏ 
                      
                        2 
                       
                     
                    
                      k 
                     
                    ⋅ 
                    
                      q 
                     
                   
                  m 
                 
               
             
           
         
        = 
        1 
        − 
        
          V 
          
            
              q 
             
           
         
        
          ∑ 
          
            
              k 
             
            , 
            i 
           
         
        
          
            
              
                q 
                
                  i 
                 
               
              
                
                  
                    ∂ 
                    f 
                   
                  
                    ∂ 
                    
                      k 
                      
                        i 
                       
                     
                   
                 
               
             
            
              
                
                  ℏ 
                  
                    2 
                   
                 
                
                  k 
                 
                ⋅ 
                
                  q 
                 
               
              m 
             
           
         
       
     
    {\displaystyle \epsilon (\mathbf {q} ,0)=1-V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {-q_{i}{\frac {\partial f}{\partial k_{i}}}}{-{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}}=1-V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}{\frac {\partial f}{\partial k_{i}}}}{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}} 
   
 Assuming a thermal equilibrium Fermi–Dirac carrier distribution, we get
  
    
      
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                
                  k 
                  
                    i 
                   
                 
               
             
           
         
        = 
        − 
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                μ 
               
             
           
          
            
              
                ∂ 
                
                  E 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                
                  k 
                  
                    i 
                   
                 
               
             
           
         
        = 
        − 
        
          ∑ 
          
            i 
           
         
        
          
            q 
            
              i 
             
           
          
            k 
            
              i 
             
           
          
            
              
                ℏ 
                
                  2 
                 
               
              m 
             
           
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                μ 
               
             
           
         
       
     
    {\displaystyle \sum _{i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial k_{i}}}}=-\sum _{i}{q_{i}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}{\frac {\partial E_{\mathbf {k} }}{\partial k_{i}}}}=-\sum _{i}{q_{i}k_{i}{\frac {\hbar ^{2}}{m}}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}}} 
   
 Therefore,
  
    
      
        
          
            
              
                ϵ 
                ( 
                
                  q 
                 
                , 
                0 
                ) 
               
              
                = 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                    , 
                    i 
                   
                 
                
                  
                    
                      
                        q 
                        
                          i 
                         
                       
                      
                        k 
                        
                          i 
                         
                       
                      
                        
                          
                            ℏ 
                            
                              2 
                             
                           
                          m 
                         
                       
                      
                        
                          
                            ∂ 
                            
                              f 
                              
                                
                                  k 
                                 
                               
                             
                           
                          
                            ∂ 
                            μ 
                           
                         
                       
                     
                    
                      
                        
                          ℏ 
                          
                            2 
                           
                         
                        
                          k 
                         
                        ⋅ 
                        
                          q 
                         
                       
                      m 
                     
                   
                 
                = 
                1 
                + 
                
                  V 
                  
                    
                      q 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                   
                 
                
                  
                    
                      ∂ 
                      
                        f 
                        
                          
                            k 
                           
                         
                       
                     
                    
                      ∂ 
                      μ 
                     
                   
                 
                = 
                1 
                + 
                
                  
                    
                      2 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      q 
                      
                        L 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                    ∂ 
                    
                      ∂ 
                      μ 
                     
                   
                 
                
                  ∑ 
                  
                    
                      k 
                     
                   
                 
                
                  
                    f 
                    
                      
                        k 
                       
                     
                   
                 
               
             
            
              
                = 
                1 
                + 
                
                  
                    
                      2 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      q 
                     
                   
                 
                
                  
                    ∂ 
                    
                      ∂ 
                      μ 
                     
                   
                 
                
                  
                    N 
                    
                      L 
                      
                        2 
                       
                     
                   
                 
                = 
                1 
                + 
                
                  
                    
                      2 
                      π 
                      
                        e 
                        
                          2 
                         
                       
                     
                    
                      ϵ 
                      q 
                     
                   
                 
                
                  
                    
                      ∂ 
                      n 
                     
                    
                      ∂ 
                      μ 
                     
                   
                 
                ≡ 
                1 
                + 
                
                  
                    κ 
                    q 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{2}\epsilon (\mathbf {q} ,0)&=1+V_{\mathbf {q} }\sum _{\mathbf {k} ,i}{\frac {q_{i}k_{i}{\frac {\hbar ^{2}}{m}}{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}}{\frac {\hbar ^{2}\mathbf {k} \cdot \mathbf {q} }{m}}}=1+V_{\mathbf {q} }\sum _{\mathbf {k} }{\frac {\partial f_{\mathbf {k} }}{\partial \mu }}=1+{\frac {2\pi e^{2}}{\epsilon qL^{2}}}{\frac {\partial }{\partial \mu }}\sum _{\mathbf {k} }{f_{\mathbf {k} }}\\&=1+{\frac {2\pi e^{2}}{\epsilon q}}{\frac {\partial }{\partial \mu }}{\frac {N}{L^{2}}}=1+{\frac {2\pi e^{2}}{\epsilon q}}{\frac {\partial n}{\partial \mu }}\equiv 1+{\frac {\kappa }{q}}.\end{alignedat}}} 
   
 
  
    
      
        κ 
       
     
    {\displaystyle \kappa } 
   
  is 2D screening wave number(2D inverse screening length) defined as
  
    
      
        κ 
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            ϵ 
           
         
        
          
            
              ∂ 
              n 
             
            
              ∂ 
              μ 
             
           
         
       
     
    {\displaystyle \kappa ={\frac {2\pi e^{2}}{\epsilon }}{\frac {\partial n}{\partial \mu }}} 
   
 
Then, the 2D statically screened Coulomb potential is given by
  
    
      
        
          V 
          
            
              s 
             
           
         
        ( 
        
          q 
         
        , 
        ω 
        = 
        0 
        ) 
        ≡ 
        
          
            
              V 
              
                
                  q 
                 
               
             
            
              ϵ 
              ( 
              
                q 
               
              , 
              0 
              ) 
             
           
         
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            
              ϵ 
              q 
              
                L 
                
                  2 
                 
               
             
           
         
        
          
            q 
            
              q 
              + 
              κ 
             
           
         
        = 
        
          
            
              2 
              π 
              
                e 
                
                  2 
                 
               
             
            
              ϵ 
              
                L 
                
                  2 
                 
               
             
           
         
        
          
            1 
            
              q 
              + 
              κ 
             
           
         
       
     
    {\displaystyle V_{\rm {s}}(\mathbf {q} ,\omega =0)\equiv {\frac {V_{\mathbf {q} }}{\epsilon (\mathbf {q} ,0)}}={\frac {2\pi e^{2}}{\epsilon qL^{2}}}{\frac {q}{q+\kappa }}={\frac {2\pi e^{2}}{\epsilon L^{2}}}{\frac {1}{q+\kappa }}} 
   
 It is known that the chemical potential of the 2-dimensional Fermi gas  is given by
  
    
      
        μ 
        ( 
        n 
        , 
        T 
        ) 
        = 
        
          
            1 
            β 
           
         
        ln 
         
        
          ( 
          
            e 
            
              
                ℏ 
                
                  2 
                 
               
              β 
              π 
              n 
              
                / 
               
              m 
             
           
          − 
          1 
          ) 
         
       
     
    {\displaystyle \mu (n,T)={\frac {1}{\beta }}\ln {(e^{\hbar ^{2}\beta \pi n/m}-1)}} 
   
 and 
  
    
      
        
          
            
              ∂ 
              μ 
             
            
              ∂ 
              n 
             
           
         
        = 
        
          
            
              
                ℏ 
                
                  2 
                 
               
              π 
             
            m 
           
         
        
          
            1 
            
              1 
              − 
              
                e 
                
                  − 
                  
                    ℏ 
                    
                      2 
                     
                   
                  β 
                  π 
                  n 
                  
                    / 
                   
                  m 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial \mu }{\partial n}}={\frac {\hbar ^{2}\pi }{m}}{\frac {1}{1-e^{-\hbar ^{2}\beta \pi n/m}}}} 
   
 
 As with the dielectric function, the magnetic susceptibility  
  
    
      
        
          χ 
          
            
              M 
             
           
         
       
     
    {\displaystyle \chi _{\mathbf {M} }} 
   
 
  
    
      
        
          χ 
          
            
              M 
             
           
         
        ( 
        
          q 
         
        , 
        ω 
        ) 
        = 
        2 
        
          μ 
          
            
              B 
             
           
          
            2 
           
         
        χ 
        ( 
        
          q 
         
        , 
        ω 
        ) 
       
     
    {\displaystyle \chi _{\mathrm {M} }(\mathbf {q} ,\omega )=2\mu _{\mathrm {B} }^{2}\chi (\mathbf {q} ,\omega )} 
   
 where 
  
    
      
        
          μ 
          
            
              B 
             
           
         
       
     
    {\displaystyle \mu _{\mathrm {B} }} 
   
 Bohr magneton .[ 6] 
In the static limit,  
  
    
      
        
          χ 
          
            
              M 
             
           
         
        ( 
        
          q 
         
        , 
        ω 
        ) 
        ≈ 
        2 
        
          μ 
          
            
              B 
             
           
          
            2 
           
         
        
          ∫ 
          
            
              | 
             
            
              k 
             
            
              | 
             
            < 
            
              k 
              
                
                  F 
                 
               
             
           
         
        
          ( 
          
            
              
                ∂ 
                
                  f 
                  
                    
                      k 
                     
                   
                 
               
              
                ∂ 
                
                  E 
                  
                    
                      k 
                     
                   
                 
               
             
           
          ) 
         
        
          d 
          
            3 
           
         
        k 
        = 
        
          μ 
          
            
              B 
             
           
          
            2 
           
         
        
          
            
              m 
              
                k 
                
                  
                    F 
                   
                 
               
             
            π 
           
         
        , 
       
     
    {\displaystyle \chi _{\mathrm {M} }(\mathbf {q} ,\omega )\approx 2\mu _{\mathrm {B} }^{2}\int _{|\mathbf {k} |<k_{\mathrm {F} }}\left({\frac {\partial f_{\mathbf {k} }}{\partial E_{\mathbf {k} }}}\right)d^{3}k=\mu _{\mathrm {B} }^{2}{\frac {mk_{\mathrm {F} }}{\pi }},} 
   
 which corresponds to the spin susceptibility of Pauli paramagnetism .[ 6] 
Screening experiments on one dimensional systems [ edit ] This time, consider some generalized case for lowering the dimension.
The lower the dimension is, the weaker the screening effect.
In lower dimension, some of the field lines pass through the barrier material wherein the screening has no effect.
For the 1-dimensional case, we can guess that the screening affects only the field lines which are very close to the wire axis.
In real experiment, we should also take the 3D bulk screening effect into account even though we deal with 1D case like the single filament. The Thomas–Fermi screening has been applied to an electron gas confined to a filament and a coaxial cylinder.[ 8] 2 Pt(CN)4 Cl0.32 ·2.6H2 0 filament, it was found that the potential within the region between the filament and cylinder varies as 
  
    
      
        
          e 
          
            − 
            
              k 
              
                
                  e 
                  f 
                  f 
                 
               
             
            r 
           
         
        
          / 
         
        r 
       
     
    {\displaystyle e^{-k_{\rm {eff}}r}/r} 
   
 platinum .[ 8] 
^ a b   N. W. Ashcroft and N. D. Mermin, Solid State Physics  (Thomson Learning, Toronto, 1976) 
^ Lindhard, Jens (1954). "On the properties of a gas of charged particles"  (PDF) . Danske Matematisk-fysiske Meddelelser . 28  (8): 1– 57. Retrieved 2016-09-28  . ^ Andersen, Jens Ulrik; Sigmund, Peter (September 1998). "Jens Lindhard". Physics Today . 51  (9): 89– 90. Bibcode :1998PhT....51i..89A . doi :10.1063/1.882460 . ISSN  0031-9228 . ^ Smith, Henrik (1983). "The Lindhard Function and the Teaching of Solid State Physics" Physica Scripta . 28  (3): 287– 293. Bibcode :1983PhyS...28..287S . doi :10.1088/0031-8949/28/3/005 . ISSN  1402-4896 . S2CID  250798690 . ^ Giuliani, Gabriele; Vignale, Giovanni (2008-06-19). Quantum Theory of the Electron Liquid ISBN  978-1-139-47158-9  ^ a b c   Coleman, Piers (2015-11-26). Introduction to Many-Body Physics ISBN  978-1-316-43202-0  ^ Misra, Prasanta (2011-01-26). Physics of Condensed Matter ISBN  978-0-12-384955-7  ^ a b   Davis, D. (1973). "Thomas-Fermi Screening in One Dimension". Physical Review B . 7  (1): 129– 135. Bibcode :1973PhRvB...7..129D . doi :10.1103/PhysRevB.7.129 .   
Haug, Hartmut; W. Koch, Stephan (2004). Quantum Theory of the Optical and Electronic Properties of Semiconductors (4th ed.) . World Scientific Publishing Co. Pte. Ltd. ISBN  978-981-238-609-0