Jump to content

Hyperbolic functions

From Simple English Wikipedia, the free encyclopedia

Hyperbolic functions are different versions of trigonometric functions. They are defined using a hyperbola instead of a circle. Also, as the derivatives of sin(t) and cos(t) are cos(t) and –sin(t), the derivatives of sinh(t) and cosh(t) are cosh(t) and sinh(t).

The basic hyperbolic functions are:[1]

Using these, you can get:[3]

and these have similar logic to the normal trigonometric functions.

The inverse hyperbolic functions are:

  • inverse hyperbolic sine "arsinh" (also "sinh−1", "asinh" or sometimes "arcsinh")[4][5]
  • inverse hyperbolic cosine "arcosh" (also "cosh−1", "acosh" or sometimes "arccosh")
  • inverse hyperbolic tangent "artanh" (also "tanh−1", "atanh" or sometimes "arctanh")
  • inverse hyperbolic cotangent "arcoth" (also "coth−1", "acoth" or sometimes "arccoth")
  • inverse hyperbolic secant "arsech" (also "sech−1", "asech" or sometimes "arcsech")
  • inverse hyperbolic cosecant "arcsch" (also "arcosech", "csch−1", "cosech−1","acsch", "acosech", or sometimes "arccsch" or "arccosech")

Definitions

[change | change source]

With hyperbolic angle u, the hyperbolic functions sinh and cosh can be defined using the exponential function eu.[1][3] In the figure .

Exponential definitions

[change | change source]
sinh x is half the difference of ex and ex
cosh x is the average of ex and ex
  • Hyperbolic sine: the odd part of the exponential function, that is,
  • Hyperbolic cosine: the even part of the exponential function, that is,
sinh, cosh and tanh
csch, sech and coth
  • Hyperbolic tangent:
  • Hyperbolic cotangent: for x ≠ 0,
  • Hyperbolic secant:
  • Hyperbolic cosecant: for x ≠ 0,
[change | change source]

References

[change | change source]
  1. 1 2 Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29. Cite error: Invalid <ref> tag; name ":1" defined multiple times with different content
  2. (1999) Collins Concise Dictionary, 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4, p. 1386
  3. 1 2 "Hyperbolic Functions". www.mathsisfun.com. Retrieved 2020-08-29. Cite error: Invalid <ref> tag; name ":2" defined multiple times with different content
  4. Woodhouse, N. M. J. (2003), Special Relativity, London: Springer, p. 71, ISBN 978-1-85233-426-0
  5. Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0
  6. Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae". The Mathematical Gazette. 2 (34): 189. doi:10.2307/3602492. JSTOR 3602492. S2CID 125866575.