From Wikipedia, the free encyclopedia
					 
					In the theory of special functions  in mathematics , the Horn functions  (named for Jakob Horn ) are the 34 distinct convergent hypergeometric series  of order two (i.e. having two independent variables), enumerated by Horn (1931)  (corrected by Borngässer (1933) ). They are listed in (Erdélyi et al. 1953 , section 5.7.1). B. C. Carlson[ 1] [ 2] 
  
    
      
        
          F 
          
            1 
           
         
        ( 
        α 
        ; 
        β 
        , 
        
          β 
          ′ 
         
        ; 
        γ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              
                β 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        < 
        1 
        ∧ 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle F_{1}(\alpha ;\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1} 
   
 
  
    
      
        
          F 
          
            2 
           
         
        ( 
        α 
        ; 
        β 
        , 
        
          β 
          ′ 
         
        ; 
        γ 
        , 
        
          γ 
          ′ 
         
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              
                β 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              
                γ 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        + 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle F_{2}(\alpha ;\beta ,\beta ';\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1} 
   
 
  
    
      
        
          F 
          
            3 
           
         
        ( 
        α 
        , 
        
          α 
          ′ 
         
        ; 
        β 
        , 
        
          β 
          ′ 
         
        ; 
        γ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                 
               
              ( 
              
                α 
                ′ 
               
              
                ) 
                
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              
                β 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        < 
        1 
        ∧ 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle F_{3}(\alpha ,\alpha ';\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1} 
   
 
  
    
      
        
          F 
          
            4 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        , 
        
          γ 
          ′ 
         
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              
                γ 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          
            
              | 
             
            z 
            
              | 
             
           
         
        + 
        
          
            
              | 
             
            w 
            
              | 
             
           
         
        < 
        1 
       
     
    {\displaystyle F_{4}(\alpha ;\beta ;\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;{\sqrt {|z|}}+{\sqrt {|w|}}<1} 
   
 
  
    
      
        
          G 
          
            1 
           
         
        ( 
        α 
        ; 
        β 
        , 
        
          β 
          ′ 
         
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            m 
            + 
            n 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        ( 
        
          β 
          ′ 
         
        
          ) 
          
            m 
            − 
            n 
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        + 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle G_{1}(\alpha ;\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m+n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1} 
   
 
  
    
      
        
          G 
          
            2 
           
         
        ( 
        α 
        , 
        
          α 
          ′ 
         
        ; 
        β 
        , 
        
          β 
          ′ 
         
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            m 
           
         
        ( 
        
          α 
          ′ 
         
        
          ) 
          
            n 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        ( 
        
          β 
          ′ 
         
        
          ) 
          
            m 
            − 
            n 
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        < 
        1 
        ∧ 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle G_{2}(\alpha ,\alpha ';\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\alpha ')_{n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1} 
   
 
  
    
      
        
          G 
          
            3 
           
         
        ( 
        α 
        , 
        
          α 
          ′ 
         
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            2 
            n 
            − 
            m 
           
         
        ( 
        
          α 
          ′ 
         
        
          ) 
          
            2 
            m 
            − 
            n 
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        27 
        
          | 
         
        z 
        
          
            | 
           
          
            2 
           
         
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        + 
        18 
        
          | 
         
        z 
        
          | 
         
        
          | 
         
        w 
        
          | 
         
        ± 
        4 
        ( 
        
          | 
         
        z 
        
          | 
         
        − 
        
          | 
         
        w 
        
          | 
         
        ) 
        < 
        1 
       
     
    {\displaystyle G_{3}(\alpha ,\alpha ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2n-m}(\alpha ')_{2m-n}{\frac {z^{m}w^{n}}{m!n!}}/;27|z|^{2}|w|^{2}+18|z||w|\pm 4(|z|-|w|)<1} 
   
 
  
    
      
        
          H 
          
            1 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        δ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        4 
        
          | 
         
        z 
        
          | 
         
        
          | 
         
        w 
        
          | 
         
        + 
        2 
        
          | 
         
        w 
        
          | 
         
        − 
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        < 
        1 
       
     
    {\displaystyle H_{1}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z||w|+2|w|-|w|^{2}<1} 
   
 
  
    
      
        
          H 
          
            2 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        δ 
        ; 
        ϵ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
              ( 
              δ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        1 
        
          / 
         
        
          | 
         
        w 
        
          | 
         
        − 
        
          | 
         
        z 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle H_{2}(\alpha ;\beta ;\gamma ;\delta ;\epsilon ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}(\delta )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;1/|w|-|z|<1} 
   
 
  
    
      
        
          H 
          
            3 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        + 
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        − 
        
          | 
         
        w 
        
          | 
         
        < 
        0 
       
     
    {\displaystyle H_{3}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|^{2}-|w|<0} 
   
 
  
    
      
        
          H 
          
            4 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        δ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              δ 
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        4 
        
          | 
         
        z 
        
          | 
         
        + 
        2 
        
          | 
         
        w 
        
          | 
         
        − 
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        < 
        1 
       
     
    {\displaystyle H_{4}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2|w|-|w|^{2}<1} 
   
 
  
    
      
        
          H 
          
            5 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                  − 
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        16 
        
          | 
         
        z 
        
          
            | 
           
          
            2 
           
         
        − 
        36 
        
          | 
         
        z 
        
          | 
         
        
          | 
         
        w 
        
          | 
         
        ± 
        ( 
        8 
        
          | 
         
        z 
        
          | 
         
        − 
        
          | 
         
        w 
        
          | 
         
        + 
        27 
        
          | 
         
        z 
        
          | 
         
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        ) 
        < 
        − 
        1 
       
     
    {\displaystyle H_{5}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n-m}}{(\gamma )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;16|z|^{2}-36|z||w|\pm (8|z|-|w|+27|z||w|^{2})<-1} 
   
 
  
    
      
        
          H 
          
            6 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            2 
            m 
            − 
            n 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        ( 
        γ 
        
          ) 
          
            n 
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        
          | 
         
        z 
        
          | 
         
        
          | 
         
        w 
        
          
            | 
           
          
            2 
           
         
        + 
        
          | 
         
        w 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle H_{6}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}(\gamma )_{n}{\frac {z^{m}w^{n}}{m!n!}}/;|z||w|^{2}+|w|<1} 
   
 
  
    
      
        
          H 
          
            7 
           
         
        ( 
        α 
        ; 
        β 
        ; 
        γ 
        ; 
        δ 
        ; 
        z 
        , 
        w 
        ) 
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                z 
                
                  m 
                 
               
              
                w 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
        
          / 
         
        ; 
        4 
        
          | 
         
        z 
        
          | 
         
        + 
        2 
        
          / 
         
        
          | 
         
        s 
        
          | 
         
        − 
        1 
        
          / 
         
        
          | 
         
        s 
        
          
            | 
           
          
            2 
           
         
        < 
        1 
       
     
    {\displaystyle H_{7}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2/|s|-1/|s|^{2}<1} 
   
 while the confluent functions include:
  
    
      
        
          Φ 
          
            1 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Phi _{1}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Φ 
          
            2 
           
         
        
          ( 
          
            β 
            , 
            
              β 
              ′ 
             
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              
                β 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Phi _{2}\left(\beta ,\beta ';\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Φ 
          
            3 
           
         
        
          ( 
          
            β 
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              β 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Phi _{3}\left(\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Ψ 
          
            1 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            γ 
            , 
            
              γ 
              ′ 
             
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              
                γ 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Psi _{1}\left(\alpha ;\beta ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Ψ 
          
            2 
           
         
        
          ( 
          
            α 
            ; 
            γ 
            , 
            
              γ 
              ′ 
             
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              
                γ 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Psi _{2}\left(\alpha ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Ξ 
          
            1 
           
         
        
          ( 
          
            α 
            , 
            
              α 
              ′ 
             
            ; 
            β 
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                 
               
              ( 
              
                α 
                ′ 
               
              
                ) 
                
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
              ( 
              
                γ 
                ′ 
               
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Xi _{1}\left(\alpha ,\alpha ';\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}}{(\gamma )_{m+n}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Ξ 
          
            2 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                 
               
              ( 
              α 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Xi _{2}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Γ 
          
            1 
           
         
        
          ( 
          
            α 
            ; 
            β 
            , 
            
              β 
              ′ 
             
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            m 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        ( 
        
          β 
          ′ 
         
        
          ) 
          
            m 
            − 
            n 
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Gamma _{1}\left(\alpha ;\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          Γ 
          
            2 
           
         
        
          ( 
          
            β 
            , 
            
              β 
              ′ 
             
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        ( 
        
          β 
          ′ 
         
        
          ) 
          
            m 
            − 
            n 
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle \Gamma _{2}\left(\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            1 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{1}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            2 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            γ 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{2}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            3 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  m 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{3}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            4 
           
         
        
          ( 
          
            α 
            ; 
            γ 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{4}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\gamma )_{n}}{(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            5 
           
         
        
          ( 
          
            α 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{5}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            6 
           
         
        
          ( 
          
            α 
            ; 
            γ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  + 
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                  + 
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{6}\left(\alpha ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            7 
           
         
        
          ( 
          
            α 
            ; 
            γ 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  + 
                  n 
                 
               
             
            
              ( 
              γ 
              
                ) 
                
                  m 
                 
               
              ( 
              δ 
              
                ) 
                
                  n 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{7}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            8 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        α 
        
          ) 
          
            2 
            m 
            − 
            n 
           
         
        ( 
        β 
        
          ) 
          
            n 
            − 
            m 
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{8}\left(\alpha ;\beta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            9 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{9}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            10 
           
         
        
          ( 
          
            α 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  2 
                  m 
                  − 
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{10}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 
  
    
      
        
          H 
          
            11 
           
         
        
          ( 
          
            α 
            ; 
            β 
            ; 
            γ 
            ; 
            δ 
            ; 
            x 
            , 
            y 
           
          ) 
         
        ≡ 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              α 
              
                ) 
                
                  m 
                  − 
                  n 
                 
               
              ( 
              β 
              
                ) 
                
                  n 
                 
               
              ( 
              γ 
              
                ) 
                
                  n 
                 
               
             
            
              ( 
              δ 
              
                ) 
                
                  m 
                 
               
             
           
         
        
          
            
              
                x 
                
                  m 
                 
               
              
                y 
                
                  n 
                 
               
             
            
              m 
              ! 
              n 
              ! 
             
           
         
       
     
    {\displaystyle H_{11}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}} 
   
 Notice that some of the complete and confluent functions share the same notation.
Borngässer, Ludwig (1933), Über hypergeometrische funkionen zweier Veränderlichen , Dissertation, Darmstadt Erdélyi, Arthur; Magnus, Wilhelm ; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol I (PDF) , McGraw-Hill Book Company, Inc., New York-Toronto-London, MR  0058756 , archived from the original  (PDF)  on 2011-08-11, retrieved 2015-08-23   Horn, J. (1931), "Hypergeometrische Funktionen zweier Veränderlichen" , Mathematische Annalen , 105  (1): 381– 407, doi :10.1007/BF01455825 , S2CID  179177588  J. Horn Math. Ann.  111 , 637 (1933) 
Srivastava, H. M.; Karlsson, Per W. (1985), Multiple Gaussian hypergeometric series , Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN  978-0-85312-602-7 MR  0834385