Grimm's conjecture
In mathematics, specifically in number theory, Grimm's conjecture states that given a set of consecutive composite numbers, for each element of the set, one can find a distinct prime that divides all elements in the set. It was first proposed by Carl Albert Grimm in 1969.[1]
Though still unproven, the conjecture has been verified for all .[2]
Formal statement
[edit]If are all composite numbers, then there are distinct primes such that divides for .
Weaker version
[edit]A weaker, though still unproven, version of this conjecture states that if there is no prime in the interval , then
has at least distinct prime divisors.[3]
Consequences
[edit]If Grimm's conjecture is true, then
for all consecutive primes and .[3] This goes well beyond what the Riemann hypothesis would imply about gaps between prime numbers: the Riemann hypothesis only implies an upper bound of .[4]
See also
[edit]References
[edit]- ^ Grimm, C. A. (1969). "A conjecture on consecutive composite numbers". American Mathematical Monthly. 76 (10): 1126–1128. doi:10.1142/S1793042106000498.
- ^ Laishram, Shanta; Shorey, T. N. (2006). "Grimm's conjecture on consecutive integers". International Journal of Number Theory. 2 (2): 207–211. doi:10.1142/S1793042106000498.
- ^ a b Erdős, P.; Selfridge, J. L. (1971). "Some problems on the prime factors of consecutive integers II" (PDF). Proceedings of the Washington State University Conference on Number Theory: 13–21.
- ^ Laishram, Shanta; Murty, M. Ram (2012). "Grimm's conjecture and smooth numbers". Michigan Mathematical Journal. 61 (1): 151–160. arXiv:1306.0765. doi:10.1307/mmj/1331222852.
- Erdös, P.; Selfridge, J. L. (1971). "Some problems on the prime factors of consecutive integers II" (PDF). Proceedings of the Washington State University Conference on Number Theory: 13–21.
- Grimm, C. A. (1969). "A conjecture on consecutive composite numbers". The American Mathematical Monthly. 76 (10): 1126–1128. doi:10.2307/2317188. JSTOR 2317188.
- Guy, R. K. "Grimm's Conjecture." §B32 in Unsolved Problems in Number Theory, 3rd ed., Springer Science+Business Media, pp. 133–134, 2004. ISBN 0-387-20860-7
- Laishram, Shanta; Murty, M. Ram (2012). "Grimm's conjecture and smooth numbers". The Michigan Mathematical Journal. 61 (1): 151–160. arXiv:1306.0765. doi:10.1307/mmj/1331222852.
- Laishram, Shanta; Shorey, T. N. (2006). "Grimm's conjecture on consecutive integers". International Journal of Number Theory. 2 (2): 207–211. doi:10.1142/S1793042106000498.
- Ramachandra, K. T.; Shorey, T. N.; Tijdeman, R. (1975). "On Grimm's problem relating to factorisation of a block of consecutive integers". Journal für die reine und angewandte Mathematik. 273: 109–124. doi:10.1515/crll.1975.273.109.
- Ramachandra, K. T.; Shorey, T. N.; Tijdeman, R. (1976). "On Grimm's problem relating to factorisation of a block of consecutive integers. II". Journal für die reine und angewandte Mathematik. 288: 192–201. doi:10.1515/crll.1976.288.192.
- Sukthankar, Neela S. (1973). "On Grimm's conjecture in algebraic number fields". Indagationes Mathematicae (Proceedings). 76 (5): 475–484. doi:10.1016/1385-7258(73)90073-5.
- Sukthankar, Neela S. (1975). "On Grimm's conjecture in algebraic number fields. II". Indagationes Mathematicae (Proceedings). 78 (1): 13–25. doi:10.1016/1385-7258(75)90009-8.
- Sukthankar, Neela S. (1977). "On Grimm's conjecture in algebraic number fields-III". Indagationes Mathematicae (Proceedings). 80 (4): 342–348. doi:10.1016/1385-7258(77)90030-0.
- Weisstein, Eric W. "Grimm's Conjecture". MathWorld.