Theorem in statistics
This article is about the extreme value theorem in statistics. For the result in calculus, see 
extreme value theorem .
 
In statistics , the Fisher–Tippett–Gnedenko theorem  (also the Fisher–Tippett theorem  or the extreme value theorem ) is a general result in extreme value theory  regarding asymptotic distribution of extreme order statistics . The maximum of a sample of iid  random variables  after proper renormalization can only converge in distribution  to one of three possible distribution families : the Gumbel distribution , the Fréchet distribution , or the Weibull distribution . Credit for the extreme value theorem and its convergence details are given to Fréchet  (1927),[ 1]   Fisher  and  Tippett  (1928),[ 2]   von Mises  (1936),[ 3] [ 4]   and Gnedenko  (1943).[ 5]  
The role of the extremal types theorem for maxima is similar to that of central limit theorem  for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if  the distribution of a normalized maximum converges, then  the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.
 
Let 
  
    
      
        
          X 
          
            1 
           
         
        , 
        
          X 
          
            2 
           
         
        , 
        … 
        , 
        
          X 
          
            n 
           
         
       
     
    {\displaystyle X_{1},X_{2},\ldots ,X_{n}} 
   
   be an n -sized sample of independent and identically-distributed random variables , each of whose cumulative distribution function  is 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
  . Suppose that there exist two sequences of real numbers 
  
    
      
        
          a 
          
            n 
           
         
        > 
        0 
       
     
    {\displaystyle a_{n}>0} 
   
   and 
  
    
      
        
          b 
          
            n 
           
         
        ∈ 
        
          R 
         
       
     
    {\displaystyle b_{n}\in \mathbb {R} } 
   
   such that the following limits converge to a non-degenerate distribution  function:
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          P 
         
        
          ( 
          
            
              
                
                  max 
                  { 
                  
                    X 
                    
                      1 
                     
                   
                  , 
                  … 
                  , 
                  
                    X 
                    
                      n 
                     
                   
                  } 
                  − 
                  
                    b 
                    
                      n 
                     
                   
                 
                
                  a 
                  
                    n 
                   
                 
               
             
            ≤ 
            x 
           
          ) 
         
        = 
        G 
        ( 
        x 
        ) 
        , 
       
     
    {\displaystyle \lim _{n\to \infty }\mathbb {P} \left({\frac {\max\{X_{1},\dots ,X_{n}\}-b_{n}}{a_{n}}}\leq x\right)=G(x),} 
   
  
or equivalently:
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          
            ( 
           
         
        F 
        ( 
        
          a 
          
            n 
           
         
        x 
        + 
        
          b 
          
            n 
           
         
        ) 
        
          
            
              ) 
             
           
          
            n 
           
         
        = 
        G 
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle \lim _{n\to \infty }{\bigl (}F(a_{n}x+b_{n}){\bigr )}^{n}=G(x).} 
   
  
In such circumstances, the limiting function 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
   is the cumulative distribution function of a  distribution belonging to either the Gumbel , the Fréchet , or the Weibull  distribution family .[ 6]  
In other words, if the limit above converges, then up to a linear change of coordinates 
  
    
      
        G 
        ( 
        x 
        ) 
       
     
    {\displaystyle G(x)} 
   
   will assume either the form:[ 7]  
  
    
      
        
          G 
          
            γ 
           
         
        ( 
        x 
        ) 
        = 
        exp 
         
        
          
            ( 
           
         
         
        − 
        ( 
        1 
        + 
        γ 
        x 
        
          ) 
          
            − 
            1 
            
              / 
             
            γ 
           
         
        
          
            ) 
           
         
         
        
          for  
         
        γ 
        ≠ 
        0 
        , 
       
     
    {\displaystyle G_{\gamma }(x)=\exp {\big (}\!-(1+\gamma x)^{-1/\gamma }{\big )}\quad {\text{for }}\gamma \neq 0,} 
   
  
with the non-zero parameter 
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
   also satisfying 
  
    
      
        1 
        + 
        γ 
        x 
        > 
        0 
       
     
    {\displaystyle 1+\gamma x>0} 
   
   for every 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   value supported by 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   (for all values 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   for which 
  
    
      
        F 
        ( 
        x 
        ) 
        ≠ 
        0 
       
     
    {\displaystyle F(x)\neq 0} 
   
  ).[clarification needed  ]  Otherwise it has the form:
  
    
      
        
          G 
          
            0 
           
         
        ( 
        x 
        ) 
        = 
        exp 
         
        
          
            ( 
           
         
         
        − 
        exp 
         
        ( 
        − 
        x 
        ) 
        
          
            ) 
           
         
         
        
          for  
         
        γ 
        = 
        0. 
       
     
    {\displaystyle G_{0}(x)=\exp {\bigl (}\!-\exp(-x){\bigr )}\quad {\text{for }}\gamma =0.} 
   
  
This is the cumulative distribution function of the generalized extreme value distribution  (GEV) with extreme value index 
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
  . The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.
Conditions of convergence [ edit ]  
The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution 
  
    
      
        G 
        ( 
        x 
        ) 
       
     
    {\displaystyle G(x)} 
   
  , above. The study of conditions for convergence of 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
   to particular cases of the generalized extreme value distribution began with Mises (1936)[ 3] [ 5] [ 4]   and was further developed by Gnedenko (1943).[ 5]  
Let 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   be the distribution function of 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  , and 
  
    
      
        
          X 
          
            1 
           
         
        , 
        … 
        , 
        
          X 
          
            n 
           
         
       
     
    {\displaystyle X_{1},\dots ,X_{n}} 
   
   be some i.i.d.  sample thereof. Also let 
  
    
      
        
          x 
          
            
              m 
              a 
              x 
             
           
         
       
     
    {\displaystyle x_{\mathsf {max}}} 
   
   be the population maximum: 
  
    
      
        
          x 
          
            
              m 
              a 
              x 
             
           
         
        ≡ 
        sup 
        { 
        x 
        ∣ 
        F 
        ( 
        x 
        ) 
        < 
        1 
        } 
       
     
    {\displaystyle x_{\mathsf {max}}\equiv \sup\{x\mid F(x)<1\}} 
   
  .
Then the limiting distribution of the normalized sample maximum, given by 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
   above, will then be one of the following three types:[ 7]  
Fréchet distribution   (
  
    
      
        γ 
        > 
        0 
       
     
    {\displaystyle \gamma >0} 
   
  ): For strictly positive 
  
    
      
        γ 
        > 
        0 
       
     
    {\displaystyle \gamma >0} 
   
  , the limiting distribution converges if and only if 
  
    
      
        
          x 
          
            
              m 
              a 
              x 
             
           
         
        = 
        ∞ 
       
     
    {\displaystyle x_{\mathsf {max}}=\infty } 
   
   and 
  
    
      
        
          lim 
          
            t 
            → 
            ∞ 
           
         
        
          
            
              1 
              − 
              F 
              ( 
              u 
              t 
              ) 
             
            
              1 
              − 
              F 
              ( 
              t 
              ) 
             
           
         
        = 
        
          u 
          
            1 
            
              / 
             
            γ 
           
         
          
       
     
    {\displaystyle \lim _{t\rightarrow \infty }{\frac {1-F(ut)}{1-F(t)}}=u^{1/\gamma }\ } 
   
   for all 
  
    
      
        u 
        > 
        0 
       
     
    {\displaystyle u>0} 
   
  . 
In this case, possible sequences that will satisfy the theorem conditions are 
  
    
      
        
          b 
          
            n 
           
         
        = 
        0 
       
     
    {\displaystyle b_{n}=0} 
   
   and 
  
    
      
        
          a 
          
            n 
           
         
        = 
        
          F 
          
            − 
            1 
           
         
         
        
          ( 
          
            1 
            − 
            
              
                
                  1 
                  n 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle a_{n}=F^{-1}\!\left(1-{\tfrac {1}{n}}\right)} 
   
  . Strictly positive  
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
   corresponds to what is called a heavy tailed   distribution.  
Gumbel distribution   (
  
    
      
        γ 
        = 
        0 
       
     
    {\displaystyle \gamma =0} 
   
  ): For trivial 
  
    
      
        γ 
        = 
        0 
       
     
    {\displaystyle \gamma =0} 
   
  , and with 
  
    
      
        
          x 
          
            
              m 
              a 
              x 
             
           
         
       
     
    {\displaystyle x_{\mathsf {max}}} 
   
   either finite or infinite, the limiting distribution converges if and only if 
  
    
      
        
          lim 
          
            t 
            → 
            
              x 
              
                
                  m 
                  a 
                  x 
                 
               
             
           
         
        
          
            
              1 
              − 
              F 
              ( 
              t 
              + 
              u 
               
              
                
                  
                    g 
                    ~ 
                   
                 
               
              ( 
              t 
              ) 
              ) 
             
            
              1 
              − 
              F 
              ( 
              t 
              ) 
             
           
         
        = 
        
          
            e 
           
          
            − 
            u 
           
         
       
     
    {\displaystyle \lim _{t\rightarrow x_{\mathsf {max}}}{\frac {1-F(t+u\,{\tilde {g}}(t))}{1-F(t)}}=\mathrm {e} ^{-u}} 
   
   for all 
  
    
      
        u 
        > 
        0 
       
     
    {\displaystyle u>0} 
   
   with 
  
    
      
        
          
            
              g 
              ~ 
             
           
         
        ( 
        t 
        ) 
        ≡ 
        
          
            
              
                ∫ 
                
                  t 
                 
                
                  
                    x 
                    
                      
                        m 
                        a 
                        x 
                       
                     
                   
                 
               
              
                
                  ( 
                 
               
              1 
              − 
              F 
              ( 
              s 
              ) 
              
                
                  ) 
                 
               
               
              
                d 
               
              s 
             
            
              1 
              − 
              F 
              ( 
              t 
              ) 
             
           
         
       
     
    {\displaystyle {\tilde {g}}(t)\equiv {\frac {\int _{t}^{x_{\mathsf {max}}}{\bigl (}1-F(s){\bigr )}\,\mathrm {d} s}{1-F(t)}}} 
   
  . 
Possible sequences here are 
  
    
      
        
          b 
          
            n 
           
         
        = 
        
          F 
          
            − 
            1 
           
         
        
          ( 
          
              
            1 
            − 
            
              
                
                  1 
                  n 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle b_{n}=F^{-1}\left(\ 1-{\tfrac {1}{n}}\right)} 
   
   and 
  
    
      
        
          a 
          
            n 
           
         
        = 
        
          
            
              g 
              ~ 
             
           
         
        
          
            ( 
           
         
        
          F 
          
            − 
            1 
           
         
         
        
          ( 
          
            1 
            − 
            
              
                
                  1 
                  n 
                 
               
             
           
          ) 
         
        
          
            ) 
           
         
       
     
    {\displaystyle a_{n}={\tilde {g}}{\bigl (}F^{-1}\!\left(1-{\tfrac {1}{n}}\right){\bigr )}} 
   
  .  
Weibull distribution   (
  
    
      
        γ 
        < 
        0 
       
     
    {\displaystyle \gamma <0} 
   
  ): For strictly negative 
  
    
      
        γ 
        < 
        0 
       
     
    {\displaystyle \gamma <0} 
   
  , the limiting distribution converges if and only if 
  
    
      
        
          x 
          
            
              m 
              a 
              x 
             
           
         
        < 
        ∞ 
       
     
    {\displaystyle x_{\mathsf {max}}<\infty } 
   
   (is finite) and 
  
    
      
        
          lim 
          
            t 
            → 
            
              0 
              
                + 
               
             
           
         
        
          
            
              1 
              − 
              F 
              ( 
              
                x 
                
                  
                    m 
                    a 
                    x 
                   
                 
               
              − 
              u 
              t 
              ) 
             
            
              1 
              − 
              F 
              ( 
              
                x 
                
                  
                    m 
                    a 
                    x 
                   
                 
               
              − 
              t 
              ) 
             
           
         
        = 
        
          u 
          
            − 
            1 
            
              / 
             
            γ 
           
         
       
     
    {\displaystyle \lim _{t\rightarrow 0^{+}}{\frac {1-F(x_{\mathsf {max}}-ut)}{1-F(x_{\mathsf {max}}-t)}}=u^{-1/\gamma }} 
   
   for all 
  
    
      
        u 
        > 
        0 
       
     
    {\displaystyle u>0} 
   
  . 
Note that for this case the exponential term 
  
    
      
        − 
        1 
        
          / 
         
        γ 
       
     
    {\displaystyle -1/\gamma } 
   
   is strictly positive, since 
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
   is strictly negative. 
Possible sequences here are 
  
    
      
        
          b 
          
            n 
           
         
        = 
        
          x 
          
            
              m 
              a 
              x 
             
           
         
       
     
    {\displaystyle b_{n}=x_{\mathsf {max}}} 
   
   and 
  
    
      
        
          a 
          
            n 
           
         
        = 
        
          x 
          
            
              m 
              a 
              x 
             
           
         
        − 
        
          F 
          
            − 
            1 
           
         
         
        
          ( 
          
            1 
            − 
            
              
                
                  1 
                  n 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle a_{n}=x_{\mathsf {max}}-F^{-1}\!\left(1-{\tfrac {1}{n}}\right)} 
   
  .  
Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as 
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
   goes to zero.
 Fréchet distribution[ edit ]  
The Cauchy distribution 's density function is:
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
                
              
                π 
                
                  2 
                 
               
              + 
              
                x 
                
                  2 
                 
               
                
             
           
         
          
        , 
       
     
    {\displaystyle f(x)={\frac {1}{\ \pi ^{2}+x^{2}\ }}\ ,} 
   
  
and its cumulative distribution function is:
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            
                
              1 
                
             
            2 
           
         
        + 
        
          
            1 
            
                
              π 
                
             
           
         
        arctan 
         
        
          ( 
          
            
              x 
              
                  
                π 
                  
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle F(x)={\frac {\ 1\ }{2}}+{\frac {1}{\ \pi \ }}\arctan \left({\frac {x}{\ \pi \ }}\right)~.} 
   
  
A little bit of calculus show that the right tail's cumulative distribution 
  
    
      
          
        1 
        − 
        F 
        ( 
        x 
        ) 
          
       
     
    {\displaystyle \ 1-F(x)\ } 
   
   is asymptotic  to 
  
    
      
          
        
          
            1 
            
                
              x 
                
             
           
         
          
        , 
       
     
    {\displaystyle \ {\frac {1}{\ x\ }}\ ,} 
   
   or
  
    
      
        ln 
         
        F 
        ( 
        x 
        ) 
        → 
        
          
            
              − 
              1 
                
             
            
                
              x 
                
             
           
         
         
        
          
              
            a 
            s 
              
           
         
         
        x 
        → 
        ∞ 
          
        , 
       
     
    {\displaystyle \ln F(x)\rightarrow {\frac {-1~}{\ x\ }}\quad {\mathsf {~as~}}\quad x\rightarrow \infty \ ,} 
   
  
so we have
  
    
      
        ln 
         
        
          ( 
          
              
            F 
            ( 
            x 
            
              ) 
              
                n 
               
             
              
           
          ) 
         
        = 
        n 
          
        ln 
         
        F 
        ( 
        x 
        ) 
        ∼ 
        − 
        
          
            
              − 
              n 
                
             
            
                
              x 
                
             
           
         
          
        . 
       
     
    {\displaystyle \ln \left(\ F(x)^{n}\ \right)=n\ \ln F(x)\sim -{\frac {-n~}{\ x\ }}~.} 
   
  
Thus we have
  
    
      
        F 
        ( 
        x 
        
          ) 
          
            n 
           
         
        ≈ 
        exp 
         
        
          ( 
          
            
              
                − 
                n 
                  
               
              
                  
                x 
                  
               
             
           
          ) 
         
       
     
    {\displaystyle F(x)^{n}\approx \exp \left({\frac {-n~}{\ x\ }}\right)} 
   
  
and letting 
  
    
      
          
        u 
        ≡ 
        
          
            x 
            
                
              n 
                
             
           
         
        − 
        1 
          
       
     
    {\displaystyle \ u\equiv {\frac {x}{\ n\ }}-1\ } 
   
   (and skipping some explanation)
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          
            ( 
           
         
          
        F 
        ( 
        n 
          
        u 
        + 
        n 
        
          ) 
          
            n 
           
         
          
        
          
            ) 
           
         
        = 
        exp 
         
        
          ( 
          
            
              
                
                  − 
                  1 
                    
                 
                
                    
                  1 
                  + 
                  u 
                    
                 
               
             
           
          ) 
         
        = 
        
          G 
          
            1 
           
         
        ( 
        u 
        ) 
          
       
     
    {\displaystyle \lim _{n\to \infty }{\Bigl (}\ F(n\ u+n)^{n}\ {\Bigr )}=\exp \left({\tfrac {-1~}{\ 1+u\ }}\right)=G_{1}(u)\ } 
   
  
for any 
  
    
      
          
        u 
          
        . 
       
     
    {\displaystyle \ u~.} 
   
  
Gumbel distribution [ edit ]  
Let us take the normal distribution  with cumulative distribution function
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            1 
            2 
           
         
        erfc 
         
        
          ( 
          
            
              
                − 
                x 
                  
               
              
                  
                
                  
                    2 
                      
                   
                 
                  
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle F(x)={\frac {1}{2}}\operatorname {erfc} \left({\frac {-x~}{\ {\sqrt {2\ }}\ }}\right)~.} 
   
  
We have
  
    
      
        ln 
         
        F 
        ( 
        x 
        ) 
        → 
        − 
        
          
            
                
              exp 
               
              
                ( 
                
                  − 
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  
                    x 
                    
                      2 
                     
                   
                 
                ) 
               
                
             
            
              
                
                  2 
                  π 
                    
                 
               
                
              x 
             
           
         
         
        
          
              
            a 
            s 
              
           
         
         
        x 
        → 
        ∞ 
       
     
    {\displaystyle \ln F(x)\rightarrow -{\frac {\ \exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\quad {\mathsf {~as~}}\quad x\rightarrow \infty } 
   
  
and thus
  
    
      
        ln 
         
        
          ( 
          
              
            F 
            ( 
            x 
            
              ) 
              
                n 
               
             
              
           
          ) 
         
        = 
        n 
        ln 
         
        F 
        ( 
        x 
        ) 
        → 
        − 
        
          
            
                
              n 
              exp 
               
              
                ( 
                
                  − 
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  
                    x 
                    
                      2 
                     
                   
                 
                ) 
               
                
             
            
              
                
                  2 
                  π 
                    
                 
               
                
              x 
             
           
         
         
        
          
              
            a 
            s 
              
           
         
         
        x 
        → 
        ∞ 
          
        . 
       
     
    {\displaystyle \ln \left(\ F(x)^{n}\ \right)=n\ln F(x)\rightarrow -{\frac {\ n\exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\quad {\mathsf {~as~}}\quad x\rightarrow \infty ~.} 
   
  
Hence we have
  
    
      
        F 
        ( 
        x 
        
          ) 
          
            n 
           
         
        ≈ 
        exp 
         
        
          ( 
          
            − 
              
            
              
                
                    
                  n 
                    
                  exp 
                   
                  
                    ( 
                    
                      − 
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                     
                    ) 
                   
                    
                 
                
                    
                  
                    
                      2 
                      π 
                        
                     
                   
                    
                  x 
                    
                 
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle F(x)^{n}\approx \exp \left(-\ {\frac {\ n\ \exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{\ {\sqrt {2\pi \ }}\ x\ }}\right)~.} 
   
  
If we define 
  
    
      
          
        
          c 
          
            n 
           
         
          
       
     
    {\displaystyle \ c_{n}\ } 
   
   as the value that exactly satisfies
  
    
      
        
          
            
                
              n 
              exp 
               
              
                ( 
                
                  − 
                    
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  
                    c 
                    
                      n 
                     
                    
                      2 
                     
                   
                 
                ) 
               
                
             
            
                
              
                
                  2 
                  π 
                    
                 
               
                
              
                c 
                
                  n 
                 
               
                
             
           
         
        = 
        1 
          
        , 
       
     
    {\displaystyle {\frac {\ n\exp \left(-\ {\tfrac {1}{2}}c_{n}^{2}\right)\ }{\ {\sqrt {2\pi \ }}\ c_{n}\ }}=1\ ,} 
   
  
then around 
  
    
      
          
        x 
        = 
        
          c 
          
            n 
           
         
          
       
     
    {\displaystyle \ x=c_{n}\ } 
   
  
  
    
      
        
          
            
                
              n 
                
              exp 
               
              
                ( 
                
                  − 
                    
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  
                    x 
                    
                      2 
                     
                   
                 
                ) 
               
                
             
            
              
                
                  2 
                  π 
                    
                 
               
                
              x 
             
           
         
        ≈ 
        exp 
         
        
          ( 
          
              
            
              c 
              
                n 
               
             
              
            ( 
            
              c 
              
                n 
               
             
            − 
            x 
            ) 
              
           
          ) 
         
          
        . 
       
     
    {\displaystyle {\frac {\ n\ \exp \left(-\ {\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\approx \exp \left(\ c_{n}\ (c_{n}-x)\ \right)~.} 
   
  
As 
  
    
      
          
        n 
          
       
     
    {\displaystyle \ n\ } 
   
   increases, this becomes a good approximation for a wider and wider range of 
  
    
      
          
        
          c 
          
            n 
           
         
          
        ( 
        
          c 
          
            n 
           
         
        − 
        x 
        ) 
          
       
     
    {\displaystyle \ c_{n}\ (c_{n}-x)\ } 
   
   so letting 
  
    
      
          
        u 
        ≡ 
        
          c 
          
            n 
           
         
          
        ( 
        x 
        − 
        
          c 
          
            n 
           
         
        ) 
          
       
     
    {\displaystyle \ u\equiv c_{n}\ (x-c_{n})\ } 
   
   we find that
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          
            ( 
           
         
          
        F 
        
          
            ( 
            
              
                
                  
                    u 
                    
                        
                      
                        c 
                        
                          n 
                         
                       
                        
                     
                   
                 
               
              + 
              
                c 
                
                  n 
                 
               
             
            ) 
           
          
            n 
           
         
          
        
          
            ) 
           
         
        = 
        exp 
         
        
          
            ( 
           
         
        − 
        exp 
         
        ( 
        − 
        u 
        ) 
        
          
            ) 
           
         
        = 
        
          G 
          
            0 
           
         
        ( 
        u 
        ) 
          
        . 
       
     
    {\displaystyle \lim _{n\to \infty }{\biggl (}\ F\left({\tfrac {u}{~c_{n}\ }}+c_{n}\right)^{n}\ {\biggr )}=\exp \!{\Bigl (}-\exp(-u){\Bigr )}=G_{0}(u)~.} 
   
  
Equivalently, 
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          P 
         
          
        
          
            ( 
           
         
        
          
            
                
              max 
              { 
              
                X 
                
                  1 
                 
               
              , 
                
              … 
              , 
                
              
                X 
                
                  n 
                 
               
              } 
              − 
              
                c 
                
                  n 
                 
               
                
             
            
              ( 
              
                
                  1 
                  
                      
                    
                      c 
                      
                        n 
                       
                     
                      
                   
                 
               
              ) 
             
           
         
        ≤ 
        u 
        
          
            ) 
           
         
        = 
        exp 
         
        
          
            ( 
           
         
        − 
        exp 
         
        ( 
        − 
        u 
        ) 
        
          
            ) 
           
         
        = 
        
          G 
          
            0 
           
         
        ( 
        u 
        ) 
          
        . 
       
     
    {\displaystyle \lim _{n\to \infty }\mathbb {P} \ {\Biggl (}{\frac {\ \max\{X_{1},\ \ldots ,\ X_{n}\}-c_{n}\ }{\left({\frac {1}{~c_{n}\ }}\right)}}\leq u{\Biggr )}=\exp \!{\Bigl (}-\exp(-u){\Bigr )}=G_{0}(u)~.} 
   
  
With this result, we see retrospectively that we need 
  
    
      
          
        ln 
         
        
          c 
          
            n 
           
         
        ≈ 
        
          
            
                
              ln 
               
              ln 
               
              n 
                
             
            2 
           
         
          
       
     
    {\displaystyle \ \ln c_{n}\approx {\frac {\ \ln \ln n\ }{2}}\ } 
   
   and then
  
    
      
        
          c 
          
            n 
           
         
        ≈ 
        
          
            2 
            ln 
             
            n 
              
           
         
          
        , 
       
     
    {\displaystyle c_{n}\approx {\sqrt {2\ln n\ }}\ ,} 
   
  
so the maximum is expected to climb toward infinity ever more slowly.
Weibull distribution [ edit ]  
We may take the simplest example, a uniform distribution between 0  and 1 , with cumulative distribution function
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        x 
          
       
     
    {\displaystyle F(x)=x\ } 
   
   for any  x   value from  0   to  1  . 
For values of 
  
    
      
          
        x 
          
        → 
          
        1 
          
       
     
    {\displaystyle \ x\ \rightarrow \ 1\ } 
   
   we have
  
    
      
        ln 
         
        
          
            ( 
           
         
          
        F 
        ( 
        x 
        
          ) 
          
            n 
           
         
          
        
          
            ) 
           
         
        = 
        n 
          
        ln 
         
        F 
        ( 
        x 
        ) 
          
        → 
          
        n 
          
        ( 
          
        1 
        − 
        x 
          
        ) 
          
        . 
       
     
    {\displaystyle \ln {\Bigl (}\ F(x)^{n}\ {\Bigr )}=n\ \ln F(x)\ \rightarrow \ n\ (\ 1-x\ )~.} 
   
  
So for 
  
    
      
          
        x 
        ≈ 
        1 
          
       
     
    {\displaystyle \ x\approx 1\ } 
   
   we have
  
    
      
          
        F 
        ( 
        x 
        
          ) 
          
            n 
           
         
        ≈ 
        exp 
         
        ( 
          
        n 
        − 
        n 
          
        x 
          
        ) 
          
        . 
       
     
    {\displaystyle \ F(x)^{n}\approx \exp(\ n-n\ x\ )~.} 
   
  
Let 
  
    
      
          
        u 
        ≡ 
        1 
        + 
        n 
          
        ( 
          
        1 
        − 
        x 
          
        ) 
          
       
     
    {\displaystyle \ u\equiv 1+n\ (\ 1-x\ )\ } 
   
   and get
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          
            ( 
           
         
          
        F 
         
        
          ( 
          
            
              
                
                  
                      
                    u 
                      
                   
                  n 
                 
               
             
            + 
            1 
            − 
            
              
                
                  
                      
                    1 
                      
                   
                  n 
                 
               
             
           
          ) 
         
          
        
          
            
              ) 
             
           
          
            n 
           
         
        = 
        exp 
         
        
          
            ( 
           
         
          
        − 
        ( 
        1 
        − 
        u 
        ) 
          
        
          
            ) 
           
         
        = 
        
          G 
          
            − 
            1 
           
         
        ( 
        u 
        ) 
          
        . 
       
     
    {\displaystyle \lim _{n\to \infty }{\Bigl (}\ F\!\left({\tfrac {\ u\ }{n}}+1-{\tfrac {\ 1\ }{n}}\right)\ {\Bigr )}^{n}=\exp \!{\bigl (}\ -(1-u)\ {\bigr )}=G_{-1}(u)~.} 
   
  
Close examination of that limit shows that the expected maximum approaches  1   in inverse proportion to  n  .
^   Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique . 6  (1): 93– 116.  
 
^   Fisher, R. A. ; Tippett, L. H. C.  (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Mathematical Proceedings of the Cambridge Philosophical Society  . 24  (2): 180– 190. Bibcode :1928PCPS...24..180F . doi :10.1017/s0305004100015681 . S2CID  123125823 . 
 
^ a   b   von Mises, R.  (1936). "La distribution de la plus grande de n  valeurs" [The distribution of the largest of n  values]. Rev. Math. Union Interbalcanique . 1 (in French): 141– 160. 
 
^ a   b   Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability : 1310– 1328.  
 
^ a   b   c   Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics  . 44  (3): 423– 453. doi :10.2307/1968974 . JSTOR  1968974 .  
 
^   Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics . New York, NY: McGraw-Hill. pp. 251– 270.  
 
^ a   b   Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction . Springer.