Jump to content

Fiber bundle construction theorem

From Wikipedia, the free encyclopedia
The Möbius strip can be constructed by a non-trivial gluing of two trivial bundles on open subsets U and V of the circle S1. When glued trivially (with gUV=1) one obtains the trivial bundle, but with the non-trivial gluing of gUV=1 on one overlap and gUV=-1 on the second overlap, one obtains the non-trivial bundle E, the Möbius strip. This can be visualised as a "twisting" of one of the local charts.

In mathematics, the fiber bundle construction theorem is a theorem which constructs a fiber bundles with a structure group from a given base space, fiber, group, and a suitable set of transition functions. The theorem also gives conditions under which two such bundles are isomorphic.

The theorem is used in the associated bundle construction, where one starts with a given bundle and changes just the fiber, while keeping all other data the same.

Formal statement

[edit]

Existence

[edit]

Let X and F be topological spaces and let G be a topological group with a continuous left action on F. Given an open cover {Ui} of X and a set of continuous functions

defined on each nonempty overlap, such that the cocycle condition

holds, there exists a fiber bundle EX with fiber F and structure group G that is trivializable over {Ui} with transition functions tij.

Isomorphism

[edit]

Let E′ be another fiber bundle with the same base space, fiber, structure group, and trivializing neighborhoods, but transition functions tij. If the action of G on F is faithful, then E′ and E are isomorphic if and only if there exist functions

such that

i.e. a gauge transformation on transition data.

In particular, given a base, fiber, structure group, group action on the fiber, trivializing neighborhoods, and a set of transition functions, if the action is faithful, then any two fiber bundles constructed are isomorphic. To see it, use the "if" direction of the isomorphism theorem with , where is the identity element of . In other words, the construction is unique up to isomorphism.

Smooth category

[edit]

The above pair of theorems hold in the topological category. A similar pair of theorems hold in the smooth category, where X and Y are smooth manifolds, G is a Lie group with a smooth left action on Y and the maps tij are all smooth.

Construction

[edit]

Existence is proven constructively by the standard coequalizer construction in category theory.

Take the disjoint union of the product spaces

Define the equivalence relation

Take the quotient , with the projection map The local trivializations are

Associated bundle

[edit]

Let EX a fiber bundle with fiber F and structure group G, and let F′ be another left G-space. One can form an associated bundle E′ → X with a fiber F′ and structure group G by taking any local trivialization of E and replacing F by F′ in the construction theorem. If one takes F′ to be G with the action of left multiplication then one obtains the associated principal bundle.

References

[edit]
  • Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. New York: Springer. ISBN 0-387-94732-9.
  • Steenrod, Norman (1951). The Topology of Fibre Bundles. Princeton: Princeton University Press. ISBN 0-691-00548-6. {{cite book}}: ISBN / Date incompatibility (help) See Part I, §2.10 and §3.