Jump to content

Exceptional field theory

From Wikipedia, the free encyclopedia

In physics, exceptional field theory is a reformulation or an extension of eleven-dimensional supergravity in which exceptional Lie group symmetries are manifest. Exceptional group symmetries such as En(n) are manifestations of U-duality in the context of M-theory.

Background

[edit]

In 1979, Eugène Cremmer and Bernard Julia found that E7(7) symmetries are present upon toroidal compactification of 11-dimensional supergravity to 4 dimensions.[1] In 1985, Bernard de Wit and Hermann Nicolai reformulated eleven-dimensional supergravity in a way that has manifest gauge invariance under SU(8), a subgroup of E7(7).[2] The theory was extended in 2013 by Henning Samtleben and Olaf Hohm to have E6(6), E7(7), and E8(8) symmetries, calling such theories under the term, exceptional field theory.[3][4][5][6] Early attempts to make duality symmetries manifest in supergravity involved the development of generalized geometry by Coimbra, Strickland-Constable, and Waldram.[7][8]

Exceptional field theory has been applied to construct consistent Kaluza-Klein truncations of supergravity using generalized Scherk-Schwarz ansätze, an important step for ensuring that solutions of the lower-dimensional theory are solutions of the higher-dimensional theory. In particular, it was utilized to derive explicit non-linear reduction formulas showing that type IIB supergravity on AdS5×S5 admits a consistent truncation to five-dimensional maximal SO(6) gauged supergravity, confirming a previously conjectured result.[9]

Exceptional field theory has also been used to study the Kaluza-Klein mass spectrum of fluctuations around compactification backgrounds in supergravity. These techniques can be applied for computations of the mass spectrum and interactions of Kaluza-Klein modes for both maximally supersymmetric and less symmetric, or non-supersymmetric backgrounds.[10]

See also

[edit]

References

[edit]
  1. ^ Cremmer, E.; Julia, B. (5 November 1979). "The SO(8) supergravity". Nuclear Physics B. 159 (1): 141–212. Bibcode:1979NuPhB.159..141C. doi:10.1016/0550-3213(79)90331-6.
  2. ^ De Wit, B.; Nicolai, H. (May 1985). "Hidden symmetry in d = 11 supergravity". Physics Letters B. 155 (1–2): 47–53. Bibcode:1985PhLB..155...47D. doi:10.1016/0370-2693(85)91030-5.
  3. ^ Hohm, Olaf; Samtleben, Henning (4 December 2013). "Exceptional Form of D = 11 Supergravity". Physical Review Letters. 111 (23) 231601. arXiv:1308.1673. Bibcode:2013PhRvL.111w1601H. doi:10.1103/PhysRevLett.111.231601. PMID 24476253.
  4. ^ Hohm, Olaf; Samtleben, Henning (27 March 2014). "Exceptional field theory. I. E 6 ( 6 ) -covariant form of M-theory and type IIB". Physical Review D. 89 (6) 066016. arXiv:1312.0614. Bibcode:2014PhRvD..89f6016H. doi:10.1103/PhysRevD.89.066016.
  5. ^ Hohm, Olaf; Samtleben, Henning (27 March 2014). "Exceptional field theory. II. E 7 ( 7 )". Physical Review D. 89 (6) 066017. arXiv:1312.4542. doi:10.1103/PhysRevD.89.066017.
  6. ^ Hohm, Olaf; Samtleben, Henning (4 September 2014). "Exceptional field theory. III. E 8 ( 8 )". Physical Review D. 90 (6) 066002. arXiv:1406.3348. Bibcode:2014PhRvD..90f6002H. doi:10.1103/PhysRevD.90.066002.
  7. ^ Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel (18 November 2011). "Supergravity as generalised geometry I: type II theories". Journal of High Energy Physics. 2011 (11): 91. arXiv:1107.1733. Bibcode:2011JHEP...11..091C. doi:10.1007/JHEP11(2011)091.
  8. ^ Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel (March 2014). "Supergravity as generalised geometry II: E d(d) × ℝ+ and M theory". Journal of High Energy Physics. 2014 (3) 19. doi:10.1007/JHEP03(2014)019. hdl:10044/1/52502.
  9. ^ Baguet, Arnaud; Hohm, Olaf; Samtleben, Henning (8 September 2015). "Consistent type IIB reductions to maximal 5D supergravity". Physical Review D. 92 (6) 065004. arXiv:1506.01385. Bibcode:2015PhRvD..92f5004B. doi:10.1103/PhysRevD.92.065004.
  10. ^ Malek, Emanuel; Samtleben, Henning (10 March 2020). "Kaluza-Klein Spectrometry for Supergravity". Physical Review Letters. 124 (10) 101601. arXiv:1911.12640. Bibcode:2020PhRvL.124j1601M. doi:10.1103/PhysRevLett.124.101601. PMID 32216423.