Concept in mathematics
In mathematics, an eigenvalue perturbation  problem is that of finding the eigenvectors and eigenvalues  of a system 
  
    
      
        A 
        x 
        = 
        λ 
        x 
       
     
    {\displaystyle Ax=\lambda x} 
   
 perturbed  from one with known eigenvectors and eigenvalues 
  
    
      
        
          A 
          
            0 
           
         
        
          x 
          
            0 
           
         
        = 
        
          λ 
          
            0 
           
         
        
          x 
          
            0 
           
         
       
     
    {\displaystyle A_{0}x_{0}=\lambda _{0}x_{0}} 
   
 
  
    
      
        
          x 
          
            0 
            i 
           
         
        , 
        
          λ 
          
            0 
            i 
           
         
        , 
        i 
        = 
        1 
        , 
        … 
        n 
       
     
    {\displaystyle x_{0i},\lambda _{0i},i=1,\dots n} 
   
 Lord Rayleigh , in his investigation of harmonic vibrations of a string perturbed by small inhomogeneities.[ 1] 
The derivations in this article are essentially self-contained and can be found in many texts on numerical linear algebra  or numerical functional analysis .
This article is focused on the case of the perturbation of a simple eigenvalue, as opposed to a 
multiplicity of eigenvalues .
Motivation for generalized eigenvalues [ edit ] Many scientific fields use eigenvalues  to obtain solutions. Generalized eigenvalue problems  are less widespread but are key in the study of vibrations . They are useful when the Galerkin  or Rayleigh-Ritz  methods are used to find approximate solutions of partial differential equations modeling vibrations of structures such as strings and plates - Courant (1943) 
[ 2] finite element method  is  a widespread particular case.
In classical mechanics , generalized eigenvalues may crop up when inspecting vibrations of multiple degrees of freedom  systems close to equilibrium. I'm this case the kinetic energy provides the mass matrix 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 [ 3] 
With both methods, the following system of differential equations or matrix differential equation  is derived:
  
    
      
        M 
        
          
            
              x 
              ¨ 
             
           
         
        + 
        B 
        
          
            
              x 
              ˙ 
             
           
         
        + 
        K 
        x 
        = 
        0 
       
     
    {\displaystyle M{\ddot {x}}+B{\dot {x}}+Kx=0} 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 
  
    
      
        B 
        = 
        0 
       
     
    {\displaystyle B=0} 
   
 
  
    
      
        x 
        = 
        
          e 
          
            i 
            ω 
            t 
           
         
        u 
       
     
    {\displaystyle x=e^{i\omega t}u} 
   
 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
 
  
    
      
        
          ω 
          
            2 
           
         
       
     
    {\displaystyle \omega ^{2}} 
   
 
  
    
      
        − 
        
          ω 
          
            2 
           
         
        M 
        u 
        + 
        K 
        u 
        = 
        0 
       
     
    {\displaystyle -\omega ^{2}Mu+Ku=0} 
   
 
Setting of perturbation for a generalized eigenvalue problem [ edit ] Suppose the solutions to the generalized eigenvalue problem  are known to be
  
    
      
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        0 
        ) 
       
     
    {\displaystyle \mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (0)} 
   
 where 
  
    
      
        
          
            K 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {K} _{0}} 
   
 
  
    
      
        
          
            M 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {M} _{0}} 
   
 λ 0i  x 0i  i  = 1, ..., N 
In order to perturb the matrices, one must find the eigenvalues and eigenvectors of
  
    
      
        
          K 
         
        
          
            x 
           
          
            i 
           
         
        = 
        
          λ 
          
            i 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        ( 
        1 
        ) 
       
     
    {\displaystyle \mathbf {K} \mathbf {x} _{i}=\lambda _{i}\mathbf {M} \mathbf {x} _{i}\qquad (1)} 
   
 where
  
    
      
        
          
            
              
                
                  K 
                 
               
              
                = 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                + 
                δ 
                
                  K 
                 
               
             
            
              
                
                  M 
                 
               
              
                = 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                + 
                δ 
                
                  M 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} &=\mathbf {K} _{0}+\delta \mathbf {K} \\\mathbf {M} &=\mathbf {M} _{0}+\delta \mathbf {M} \end{aligned}}} 
   
 with the perturbations 
  
    
      
        δ 
        
          K 
         
       
     
    {\displaystyle \delta \mathbf {K} } 
   
 
  
    
      
        δ 
        
          M 
         
       
     
    {\displaystyle \delta \mathbf {M} } 
   
 
  
    
      
        
          K 
         
       
     
    {\displaystyle \mathbf {K} } 
   
 
  
    
      
        
          M 
         
       
     
    {\displaystyle \mathbf {M} } 
   
 
  
    
      
        
          
            
              
                
                  λ 
                  
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
               
             
            
              
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
              
                = 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda _{i}&=\lambda _{0i}+\delta \lambda _{i}\\\mathbf {x} _{i}&=\mathbf {x} _{0i}+\delta \mathbf {x} _{i}\end{aligned}}} 
   
 Under the assumption that the matrices are symmetric , positive definite , and assume the eigenvectors are scaled such that
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          δ 
          
            i 
            j 
           
         
        , 
         
     
    {\displaystyle \mathbf {x} _{0j}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}=\delta _{ij},\quad } 
   
 
  
    
      
        
          
            x 
           
          
            i 
           
          
            T 
           
         
        
          M 
         
        
          
            x 
           
          
            j 
           
         
        = 
        
          δ 
          
            i 
            j 
           
         
        ( 
        2 
        ) 
       
     
    {\displaystyle \mathbf {x} _{i}^{T}\mathbf {M} \mathbf {x} _{j}=\delta _{ij}\qquad (2)} 
   
 where δij  Kronecker delta . 
Now the equation to be solved is
  
    
      
        
          K 
         
        
          
            x 
           
          
            i 
           
         
        − 
        
          λ 
          
            i 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        = 
        0. 
       
     
    {\displaystyle \mathbf {K} \mathbf {x} _{i}-\lambda _{i}\mathbf {M} \mathbf {x} _{i}=0.} 
   
 In this article, the study is restricted to first order perturbation.
First order expansion of the equation [ edit ] Substituting in (1) results in
  
    
      
        ( 
        
          
            K 
           
          
            0 
           
         
        + 
        δ 
        
          K 
         
        ) 
        ( 
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          
            x 
           
          
            i 
           
         
        ) 
        = 
        
          ( 
          
            
              λ 
              
                0 
                i 
               
             
            + 
            δ 
            
              λ 
              
                i 
               
             
           
          ) 
         
        
          ( 
          
            
              
                M 
               
              
                0 
               
             
            + 
            δ 
            
              M 
             
           
          ) 
         
        
          ( 
          
            
              
                x 
               
              
                0 
                i 
               
             
            + 
            δ 
            
              
                x 
               
              
                i 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle (\mathbf {K} _{0}+\delta \mathbf {K} )(\mathbf {x} _{0i}+\delta \mathbf {x} _{i})=\left(\lambda _{0i}+\delta \lambda _{i}\right)\left(\mathbf {M} _{0}+\delta \mathbf {M} \right)\left(\mathbf {x} _{0i}+\delta \mathbf {x} _{i}\right),} 
   
 which expands to
  
    
      
        
          
            
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  K 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                = 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} _{0}\mathbf {x} _{0i}&+\delta \mathbf {K} \mathbf {x} _{0i}+\mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \delta \mathbf {x} _{i}=\\[6pt]&\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}+\\&\quad \lambda _{0i}\delta \mathbf {M} \delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \delta \mathbf {x} _{i}.\end{aligned}}} 
   
 Canceling from (0) (
  
    
      
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
       
     
    {\displaystyle \mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}} 
   
 
  
    
      
        
          
            
              
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  K 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\delta \mathbf {K} \mathbf {x} _{0i}+&\mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \delta \mathbf {x} _{i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}+\\&\lambda _{0i}\delta \mathbf {M} \delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \delta \mathbf {x} _{i}.\end{aligned}}} 
   
 Removing the higher-order terms, this simplifies to
  
    
      
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        3 
        ) 
       
     
    {\displaystyle \mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (3)} 
   
 In other words, 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}} 
   
  As the matrix is symmetric, the unperturbed eigenvectors are 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            N 
           
         
        
          ε 
          
            i 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
         
        ( 
        4 
        ) 
         
     
    {\displaystyle \delta \mathbf {x} _{i}=\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}\qquad (4)\quad } 
   
 
  
    
      
        
          ε 
          
            i 
            j 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          
            x 
           
          
            i 
           
         
       
     
    {\displaystyle \varepsilon _{ij}=\mathbf {x} _{0j}^{T}M\delta \mathbf {x} _{i}} 
   
 where εij  
In the same way, substituting in (2), and removing higher order terms, 
  
    
      
        δ 
        
          
            x 
           
          
            j 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
         
        δ 
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        0 
        
          ( 
          5 
          ) 
         
       
     
    {\displaystyle \delta \mathbf {x} _{j}\mathbf {M} _{0}\mathbf {x} _{0i}+\mathbf {x} _{0j}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}\delta \mathbf {M} _{0}\mathbf {x} _{0i}=0\quad {(5)}} 
   
 
The derivation is then split into two paths.
First path: get first eigenvalue perturbation [ edit ] Eigenvalue perturbation [ edit ] Starting with (3)
  
    
      
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        ; 
       
     
    {\displaystyle \quad \mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i};} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{T}} 
   
  
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}} 
   
 or
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}-\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i}} 
   
 This is the first order perturbation of the generalized Rayleigh quotient   with fixed 
  
    
      
        
          x 
          
            0 
            i 
           
         
       
     
    {\displaystyle x_{0i}} 
   
 
  
    
      
        R 
        ( 
        K 
        , 
        M 
        ; 
        
          x 
          
            0 
            i 
           
         
        ) 
        = 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        K 
        
          x 
          
            0 
            i 
           
         
        
          / 
         
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        
          x 
          
            0 
            i 
           
         
        , 
        
           with  
         
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        
          x 
          
            0 
            i 
           
         
        = 
        1 
       
     
    {\displaystyle R(K,M;x_{0i})=x_{0i}^{T}Kx_{0i}/x_{0i}^{T}Mx_{0i},{\text{ with }}x_{0i}^{T}Mx_{0i}=1} 
   
 
Moreover, for 
  
    
      
        M 
        = 
        I 
       
     
    {\displaystyle M=I} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        δ 
        K 
        
          x 
          
            0 
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}=x_{0i}^{T}\delta Kx_{0i}} 
   
 Bauer-Fike  theorem which provides a bound for eigenvalue perturbation.
Eigenvector perturbation [ edit ] One then left multiplies (3) with 
  
    
      
        
          x 
          
            0 
            j 
           
          
            T 
           
         
       
     
    {\displaystyle x_{0j}^{T}} 
   
 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}\mathbf {K} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 Recalling that 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        K 
        = 
        
          λ 
          
            0 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        M 
        
           and  
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}K=\lambda _{0j}\mathbf {x} _{0j}^{T}M{\text{ and }}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\mathbf {x} _{0i}=0,} 
   
 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          λ 
          
            0 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \lambda _{0j}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}.} 
   
 or
  
    
      
        ( 
        
          λ 
          
            0 
            j 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        ) 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle (\lambda _{0j}-\lambda _{0i})\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}.} 
   
 As the eigenvalues are assumed to be simple, for 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          ϵ 
          
            i 
            j 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          
            
              − 
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                K 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
              + 
              
                λ 
                
                  0 
                  i 
                 
               
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                M 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              ( 
              
                λ 
                
                  0 
                  j 
                 
               
              − 
              
                λ 
                
                  0 
                  i 
                 
               
              ) 
             
           
         
        , 
        i 
        = 
        1 
        , 
        … 
        N 
        ; 
        j 
        = 
        1 
        , 
        … 
        N 
        ; 
        j 
        ≠ 
        i 
        . 
       
     
    {\displaystyle \epsilon _{ij}=\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}={\frac {-\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}}{(\lambda _{0j}-\lambda _{0i})}},i=1,\dots N;j=1,\dots N;j\neq i.} 
   
 Moreover (5) (the first order variation of (2) ) yields
  
    
      
        2 
        
          ϵ 
          
            i 
            i 
           
         
        = 
        2 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          x 
          
            i 
           
         
        = 
        − 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        M 
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle 2\epsilon _{ii}=2\mathbf {x} _{0i}^{T}\mathbf {M} _{0}\delta x_{i}=-\mathbf {x} _{0i}^{T}\delta M\mathbf {x} _{0i}.} 
   
 
  
    
      
        δ 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle \delta x_{i}} 
   
 
Second path: Straightforward manipulations [ edit ] Substituting (4) into (3) and rearranging gives
  
    
      
        
          
            
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                ( 
                5 
                ) 
               
             
            
              
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
               
            
              
                ( 
                
                  applying  
                 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                   to the sum 
                 
                ) 
               
             
            
              
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  λ 
                  
                    0 
                    j 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                ( 
                
                  using Eq.  
                 
                ( 
                1 
                ) 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&(5)\\\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {K} _{0}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&\\({\text{applying }}\mathbf {K} _{0}{\text{ to the sum}})\\\sum _{j=1}^{N}\varepsilon _{ij}\lambda _{0j}\mathbf {M} _{0}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&({\text{using Eq. }}(1))\end{aligned}}} 
   
 Because the eigenvectors are M 0 M 0 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\varepsilon _{ii}\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}+\mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 By use of equation (1) again:
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            K 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        6 
        ) 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\mathbf {K} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (6)} 
   
 The two terms containing εii  
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 Canceling those terms in (6) leaves
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 Rearranging gives
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  i 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                
                  x 
                 
                
                  0 
                  i 
                 
                
                  ⊤ 
                 
               
              
                
                  M 
                 
                
                  0 
                 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
           
         
       
     
    {\displaystyle \delta \lambda _{i}={\frac {\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}}}} 
   
 But by (2), this denominator is equal to 1. Thus
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          ( 
          
            δ 
            
              K 
             
            − 
            
              λ 
              
                0 
                i 
               
             
            δ 
            
              M 
             
           
          ) 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}.} 
   
 Then, as 
  
    
      
        
          λ 
          
            i 
           
         
        ≠ 
        
          λ 
          
            k 
           
         
       
     
    {\displaystyle \lambda _{i}\neq \lambda _{k}} 
   
 
  
    
      
        i 
        ≠ 
        k 
       
     
    {\displaystyle i\neq k} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            k 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0k}^{\top }} 
   
 
  
    
      
        
          ε 
          
            i 
            k 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  k 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                λ 
                
                  0 
                  i 
                 
               
              − 
              
                λ 
                
                  0 
                  k 
                 
               
             
           
         
        , 
        i 
        ≠ 
        k 
        . 
       
     
    {\displaystyle \varepsilon _{ik}={\frac {\mathbf {x} _{0k}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0k}}},\qquad i\neq k.} 
   
 Or by changing the name of the indices:
  
    
      
        
          ε 
          
            i 
            j 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                λ 
                
                  0 
                  i 
                 
               
              − 
              
                λ 
                
                  0 
                  j 
                 
               
             
           
         
        , 
        i 
        ≠ 
        j 
        . 
       
     
    {\displaystyle \varepsilon _{ij}={\frac {\mathbf {x} _{0j}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0j}}},\qquad i\neq j.} 
   
 To find εii  
  
    
      
        
          
            x 
           
          
            i 
           
          
            ⊤ 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        = 
        1 
       
     
    {\displaystyle \mathbf {x} _{i}^{\top }\mathbf {M} \mathbf {x} _{i}=1} 
   
 implies:
  
    
      
        
          ε 
          
            i 
            i 
           
         
        = 
        − 
        
          
            
              1 
              2 
             
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \varepsilon _{ii}=-{\tfrac {1}{2}}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}.} 
   
 Summary of the first order perturbation result [ edit ] In the case where all the matrices are Hermitian positive definite and all the eigenvalues are distinct 
  
    
      
        
          
            
              
                
                  λ 
                  
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                + 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                  
                    ⊤ 
                   
                 
                
                  ( 
                  
                    δ 
                    
                      K 
                     
                    − 
                    
                      λ 
                      
                        0 
                        i 
                       
                     
                    δ 
                    
                      M 
                     
                   
                  ) 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
             
            
              
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
              
                = 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        
                          1 
                          2 
                         
                       
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                      
                        ⊤ 
                       
                     
                    δ 
                    
                      M 
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                     
                   
                  ) 
                 
                + 
                
                  ∑ 
                  
                    
                      
                        j 
                        = 
                        1 
                       
                      
                        j 
                        ≠ 
                        i 
                       
                     
                   
                  
                    N 
                   
                 
                
                  
                    
                      
                        
                          x 
                         
                        
                          0 
                          j 
                         
                        
                          ⊤ 
                         
                       
                      
                        ( 
                        
                          δ 
                          
                            K 
                           
                          − 
                          
                            λ 
                            
                              0 
                              i 
                             
                           
                          δ 
                          
                            M 
                           
                         
                        ) 
                       
                      
                        
                          x 
                         
                        
                          0 
                          i 
                         
                       
                     
                    
                      
                        λ 
                        
                          0 
                          i 
                         
                       
                      − 
                      
                        λ 
                        
                          0 
                          j 
                         
                       
                     
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda _{i}&=\lambda _{0i}+\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}\\\mathbf {x} _{i}&=\mathbf {x} _{0i}\left(1-{\tfrac {1}{2}}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}\right)+\sum _{j=1 \atop j\neq i}^{N}{\frac {\mathbf {x} _{0j}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0j}}}\mathbf {x} _{0j}\end{aligned}}} 
   
 for infinitesimal 
  
    
      
        δ 
        
          K 
         
       
     
    {\displaystyle \delta \mathbf {K} } 
   
 
  
    
      
        δ 
        
          M 
         
       
     
    {\displaystyle \delta \mathbf {M} } 
   
 
A proof that higher order terms may be neglect may be derived using the implicit function theorem.
Theoretical derivation [ edit ] Perturbation of an implicit function. [ edit ] In the next paragraph, we shall  use the Implicit function theorem  (Statement of the theorem ); we  notice that for a continuously differentiable function 
  
    
      
        f 
        : 
        
          
            R 
           
          
            n 
            + 
            m 
           
         
        → 
        
          
            R 
           
          
            m 
           
         
        , 
        f 
        : 
        ( 
        x 
        , 
        y 
        ) 
        ↦ 
        f 
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle f:\mathbb {R} ^{n+m}\to \mathbb {R} ^{m},\;f:(x,y)\mapsto f(x,y)} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            b 
           
         
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
       
     
    {\displaystyle J_{f,b}(x_{0},y_{0})} 
   
 
  
    
      
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
       
     
    {\displaystyle (x_{0},y_{0})} 
   
 
  
    
      
        f 
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
        = 
        0 
       
     
    {\displaystyle f(x_{0},y_{0})=0} 
   
 
  
    
      
        f 
        ( 
        x 
        , 
        y 
        ) 
        = 
        0 
       
     
    {\displaystyle f(x,y)=0} 
   
 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        
          x 
          
            0 
           
         
       
     
    {\displaystyle x_{0}} 
   
 
  
    
      
        y 
        = 
        g 
        ( 
        x 
        ) 
       
     
    {\displaystyle y=g(x)} 
   
 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            y 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        
          J 
          
            g 
            , 
            x 
           
         
        ( 
        x 
        ) 
        + 
        
          J 
          
            f 
            , 
            x 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        = 
        0 
        ( 
        6 
        ) 
       
     
    {\displaystyle J_{f,y}(x,g(x))J_{g,x}(x)+J_{f,x}(x,g(x))=0\quad (6)} 
   
 As soon as the hypothesis of the theorem is satisfied, the Jacobian matrix of 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        f 
        ( 
        
          x 
          
            0 
           
         
        + 
        δ 
        x 
        , 
        
          y 
          
            0 
           
         
        + 
        δ 
        y 
        ) 
        = 
        0 
       
     
    {\displaystyle f(x_{0}+\delta x,y_{0}+\delta y)=0} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            x 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        δ 
        x 
        + 
        
          J 
          
            f 
            , 
            y 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        δ 
        y 
        = 
        0 
       
     
    {\displaystyle J_{f,x}(x,g(x))\delta x+J_{f,y}(x,g(x))\delta y=0} 
   
 
  
    
      
        δ 
        y 
        = 
        
          J 
          
            g 
            , 
            x 
           
         
        ( 
        x 
        ) 
        δ 
        x 
       
     
    {\displaystyle \delta y=J_{g,x}(x)\delta x} 
   
 
  
    
      
        ( 
        6 
        ) 
       
     
    {\displaystyle (6)} 
   
 
Eigenvalue perturbation: a theoretical basis. [ edit ] We use the previous paragraph (Perturbation of an implicit function) with somewhat different notations suited to eigenvalue perturbation; we introduce 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        : 
        
          
            R 
           
          
            2 
            
              n 
              
                2 
               
             
           
         
        × 
        
          
            R 
           
          
            n 
            + 
            1 
           
         
        → 
        
          
            R 
           
          
            n 
            + 
            1 
           
         
       
     
    {\displaystyle {\tilde {f}}:\mathbb {R} ^{2n^{2}}\times \mathbb {R} ^{n+1}\to \mathbb {R} ^{n+1}} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        K 
        , 
        M 
        , 
        λ 
        , 
        x 
        ) 
        = 
        
          
            
              ( 
             
            
              
                f 
                ( 
                K 
                , 
                M 
                , 
                λ 
                , 
                x 
                ) 
               
              
                
                  f 
                  
                    n 
                    + 
                    1 
                   
                 
                ( 
                x 
                ) 
               
             
            
              ) 
             
           
         
       
     
    {\displaystyle {\tilde {f}}(K,M,\lambda ,x)={\binom {f(K,M,\lambda ,x)}{f_{n+1}(x)}}} 
   
 
  
    
      
        f 
        ( 
        K 
        , 
        M 
        , 
        λ 
        , 
        x 
        ) 
        = 
        K 
        x 
        − 
        λ 
        x 
        , 
        
          f 
          
            n 
            + 
            1 
           
         
        ( 
        M 
        , 
        x 
        ) 
        = 
        
          x 
          
            T 
           
         
        M 
        x 
        − 
        1 
       
     
    {\displaystyle f(K,M,\lambda ,x)=Kx-\lambda x,f_{n+1}(M,x)=x^{T}Mx-1} 
   
 Implicit function theorem , we study the invertibility of the Jacobian 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            λ 
            , 
            x 
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            0 
            i 
           
         
        , 
        
          x 
          
            0 
            i 
           
         
        ) 
       
     
    {\displaystyle J_{{\tilde {f}};\lambda ,x}(K,M;\lambda _{0i},x_{0i})} 
   
 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            λ 
            , 
            x 
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            i 
           
         
        , 
        
          x 
          
            i 
           
         
        ) 
        ( 
        δ 
        λ 
        , 
        δ 
        x 
        ) 
        = 
        
          
            
              ( 
             
            
              
                − 
                M 
                
                  x 
                  
                    i 
                   
                 
               
              0 
             
            
              ) 
             
           
         
        δ 
        λ 
        + 
        
          
            
              ( 
             
            
              
                K 
                − 
                λ 
                M 
               
              
                2 
                
                  x 
                  
                    i 
                   
                  
                    T 
                   
                 
                M 
               
             
            
              ) 
             
           
         
        δ 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle J_{{\tilde {f}};\lambda ,x}(K,M;\lambda _{i},x_{i})(\delta \lambda ,\delta x)={\binom {-Mx_{i}}{0}}\delta \lambda +{\binom {K-\lambda M}{2x_{i}^{T}M}}\delta x_{i}} 
   
 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            
              λ 
              
                0 
                i 
               
             
            , 
            
              x 
              
                0 
                i 
               
             
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            0 
            i 
           
         
        , 
        
          x 
          
            0 
            i 
           
         
        ) 
        ( 
        δ 
        
          λ 
          
            i 
           
         
        , 
        δ 
        
          x 
          
            i 
           
         
        ) 
        = 
       
     
    {\displaystyle J_{{\tilde {f}};\lambda _{0i},x_{0i}}(K,M;\lambda _{0i},x_{0i})(\delta \lambda _{i},\delta x_{i})=} 
   
 
  
    
      
        
          
            
              ( 
             
            
              y 
              
                y 
                
                  n 
                  + 
                  1 
                 
               
             
            
              ) 
             
           
         
       
     
    {\displaystyle {\binom {y}{y_{n+1}}}} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        − 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        y 
        , 
        
           and  
         
        ( 
        
          λ 
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            j 
           
         
        ) 
        
          x 
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            j 
           
          
            T 
           
         
        y 
        , 
        j 
        = 
        1 
        , 
        … 
        , 
        n 
        , 
        j 
        ≠ 
        i 
        ; 
       
     
    {\displaystyle \delta \lambda _{i}=-x_{0i}^{T}y,\;{\text{ and }}(\lambda _{0i}-\lambda _{0j})x_{0j}^{T}M\delta x_{i}=x_{j}^{T}y,j=1,\dots ,n,j\neq i\;;} 
   
 
  
    
      
        
           or  
         
        
          x 
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            j 
           
          
            T 
           
         
        y 
        
          / 
         
        ( 
        
          λ 
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            j 
           
         
        ) 
        , 
        
           and  
         
        2 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          y 
          
            n 
            + 
            1 
           
         
       
     
    {\displaystyle {\text{ or }}x_{0j}^{T}M\delta x_{i}=x_{j}^{T}y/(\lambda _{0i}-\lambda _{0j}),{\text{ and }}\;2x_{0i}^{T}M\delta x_{i}=y_{n+1}} 
   
 
  
    
      
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \lambda _{i}} 
   
 
  
    
      
        
          x 
          
            0 
            j 
           
         
        , 
        j 
        = 
        1 
        , 
        … 
        , 
        n 
       
     
    {\displaystyle x_{0j},j=1,\dots ,n} 
   
 
The implicit function theorem  provides a continuously differentiable function 
  
    
      
        ( 
        K 
        , 
        M 
        ) 
        ↦ 
        ( 
        
          λ 
          
            i 
           
         
        ( 
        K 
        , 
        M 
        ) 
        , 
        
          x 
          
            i 
           
         
        ( 
        K 
        , 
        M 
        ) 
        ) 
       
     
    {\displaystyle (K,M)\mapsto (\lambda _{i}(K,M),x_{i}(K,M))} 
   
 little o notation :
  
    
      
        
          λ 
          
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        + 
        o 
        ( 
        ‖ 
        δ 
        K 
        ‖ 
        + 
        ‖ 
        δ 
        M 
        ‖ 
        ) 
       
     
    {\displaystyle \lambda _{i}=\lambda _{0i}+\delta \lambda _{i}+o(\|\delta K\|+\|\delta M\|)} 
   
 
  
    
      
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            0 
            i 
           
         
        + 
        δ 
        
          x 
          
            i 
           
         
        + 
        o 
        ( 
        ‖ 
        δ 
        K 
        ‖ 
        + 
        ‖ 
        δ 
        M 
        ‖ 
        ) 
       
     
    {\displaystyle x_{i}=x_{0i}+\delta x_{i}+o(\|\delta K\|+\|\delta M\|)} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        ; 
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}-\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i};} 
   
 
  
    
      
        δ 
        
          x 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
         
        
           with 
         
       
     
    {\displaystyle \delta x_{i}=\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}\mathbf {x} _{0j}{\text{ with}}} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          
            
              − 
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                K 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
              + 
              
                λ 
                
                  0 
                  i 
                 
               
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                M 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              ( 
              
                λ 
                
                  0 
                  j 
                 
               
              − 
              
                λ 
                
                  0 
                  i 
                 
               
              ) 
             
           
         
        , 
        i 
        = 
        1 
        , 
        … 
        n 
        ; 
        j 
        = 
        1 
        , 
        … 
        n 
        ; 
        j 
        ≠ 
        i 
        . 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}={\frac {-\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}}{(\lambda _{0j}-\lambda _{0i})}},i=1,\dots n;j=1,\dots n;j\neq i.} 
   
 
Results of sensitivity analysis with respect to the entries of the matrices [ edit ] This means it is possible to efficiently do a sensitivity analysis  on λi  K k ℓK ℓk  (2 − δ k ℓ  term
[ edit ] In the entry applications of eigenvalues and eigenvectors  we find numerous scientific fields in which eigenvalues are used to obtain solutions.  Generalized eigenvalue problems  are less widespread but are a key in the study of vibrations .
They are useful when we use the  Galerkin method   or  Rayleigh-Ritz method  to find approximate 
solutions of partial differential equations modeling vibrations of structures such as strings and plates;  the paper of Courant (1943) 
[ 4] Finite element method  is  a widespread particular case.
In classical mechanics, generalized eigenvalues may crop up when we look for vibrations of  multiple degrees of freedom  systems close to equilibrium; the kinetic energy provides the mass matrix 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 [ 5] 
With both methods, we obtain a system of differential equations or Matrix differential equation 
  
    
      
        M 
        
          
            
              x 
              ¨ 
             
           
         
        + 
        B 
        
          
            
              x 
              ˙ 
             
           
         
        + 
        K 
        x 
        = 
        0 
       
     
    {\displaystyle M{\ddot {x}}+B{\dot {x}}+Kx=0} 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 
  
    
      
        B 
        = 
        0 
       
     
    {\displaystyle B=0} 
   
 
  
    
      
        x 
        = 
        
          e 
          
            i 
            ω 
            t 
           
         
        u 
       
     
    {\displaystyle x=e^{i\omega t}u} 
   
 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
 
  
    
      
        
          ω 
          
            2 
           
         
       
     
    {\displaystyle \omega ^{2}} 
   
 
  
    
      
        − 
        
          ω 
          
            2 
           
         
        M 
        u 
        + 
        K 
        u 
        = 
        0 
       
     
    {\displaystyle -\omega ^{2}Mu+Ku=0} 
   
 
Setting of perturbation for a generalized eigenvalue problem [ edit ] Suppose we have solutions to the generalized eigenvalue problem ,
  
    
      
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        0 
        ) 
       
     
    {\displaystyle \mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (0)} 
   
 where 
  
    
      
        
          
            K 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {K} _{0}} 
   
 
  
    
      
        
          
            M 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {M} _{0}} 
   
 λ 0i  x 0i  i  = 1, ..., N the eigenvalues are distinct .
Now suppose we want to change the matrices by a small amount. That is, we want to find the eigenvalues and eigenvectors of
  
    
      
        
          K 
         
        
          
            x 
           
          
            i 
           
         
        = 
        
          λ 
          
            i 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        ( 
        1 
        ) 
       
     
    {\displaystyle \mathbf {K} \mathbf {x} _{i}=\lambda _{i}\mathbf {M} \mathbf {x} _{i}\qquad (1)} 
   
 where
  
    
      
        
          
            
              
                
                  K 
                 
               
              
                = 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                + 
                δ 
                
                  K 
                 
               
             
            
              
                
                  M 
                 
               
              
                = 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                + 
                δ 
                
                  M 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} &=\mathbf {K} _{0}+\delta \mathbf {K} \\\mathbf {M} &=\mathbf {M} _{0}+\delta \mathbf {M} \end{aligned}}} 
   
 with the perturbations 
  
    
      
        δ 
        
          K 
         
       
     
    {\displaystyle \delta \mathbf {K} } 
   
 
  
    
      
        δ 
        
          M 
         
       
     
    {\displaystyle \delta \mathbf {M} } 
   
 
  
    
      
        
          K 
         
       
     
    {\displaystyle \mathbf {K} } 
   
 
  
    
      
        
          M 
         
       
     
    {\displaystyle \mathbf {M} } 
   
 
  
    
      
        
          
            
              
                
                  λ 
                  
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
               
             
            
              
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
              
                = 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda _{i}&=\lambda _{0i}+\delta \lambda _{i}\\\mathbf {x} _{i}&=\mathbf {x} _{0i}+\delta \mathbf {x} _{i}\end{aligned}}} 
   
 We assume that the matrices are symmetric  and positive definite , and assume we have scaled the eigenvectors such that
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          δ 
          
            i 
            j 
           
         
        , 
         
     
    {\displaystyle \mathbf {x} _{0j}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}=\delta _{ij},\quad } 
   
 
  
    
      
        
          
            x 
           
          
            i 
           
          
            T 
           
         
        
          M 
         
        
          
            x 
           
          
            j 
           
         
        = 
        
          δ 
          
            i 
            j 
           
         
        ( 
        2 
        ) 
       
     
    {\displaystyle \mathbf {x} _{i}^{T}\mathbf {M} \mathbf {x} _{j}=\delta _{ij}\qquad (2)} 
   
 where δij  Kronecker delta . 
Now we want to solve the equation
  
    
      
        
          K 
         
        
          
            x 
           
          
            i 
           
         
        − 
        
          λ 
          
            i 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        = 
        0. 
       
     
    {\displaystyle \mathbf {K} \mathbf {x} _{i}-\lambda _{i}\mathbf {M} \mathbf {x} _{i}=0.} 
   
 In this article we restrict the study to first order perturbation.
First order expansion of the equation [ edit ] Substituting in (1), we get
  
    
      
        ( 
        
          
            K 
           
          
            0 
           
         
        + 
        δ 
        
          K 
         
        ) 
        ( 
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          
            x 
           
          
            i 
           
         
        ) 
        = 
        
          ( 
          
            
              λ 
              
                0 
                i 
               
             
            + 
            δ 
            
              λ 
              
                i 
               
             
           
          ) 
         
        
          ( 
          
            
              
                M 
               
              
                0 
               
             
            + 
            δ 
            
              M 
             
           
          ) 
         
        
          ( 
          
            
              
                x 
               
              
                0 
                i 
               
             
            + 
            δ 
            
              
                x 
               
              
                i 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle (\mathbf {K} _{0}+\delta \mathbf {K} )(\mathbf {x} _{0i}+\delta \mathbf {x} _{i})=\left(\lambda _{0i}+\delta \lambda _{i}\right)\left(\mathbf {M} _{0}+\delta \mathbf {M} \right)\left(\mathbf {x} _{0i}+\delta \mathbf {x} _{i}\right),} 
   
 which expands to
  
    
      
        
          
            
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  K 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                = 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} _{0}\mathbf {x} _{0i}&+\delta \mathbf {K} \mathbf {x} _{0i}+\mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \delta \mathbf {x} _{i}=\\[6pt]&\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}+\\&\quad \lambda _{0i}\delta \mathbf {M} \delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \delta \mathbf {x} _{i}.\end{aligned}}} 
   
 Canceling from (0) (
  
    
      
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
       
     
    {\displaystyle \mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}} 
   
 
  
    
      
        
          
            
              
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  K 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
               
             
            
              
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                δ 
                
                  M 
                 
                δ 
                
                  
                    x 
                   
                  
                    i 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\delta \mathbf {K} \mathbf {x} _{0i}+&\mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \delta \mathbf {x} _{i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}+\\&\lambda _{0i}\delta \mathbf {M} \delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\delta \lambda _{i}\delta \mathbf {M} \delta \mathbf {x} _{i}.\end{aligned}}} 
   
 Removing the higher-order terms, this simplifies to
  
    
      
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        3 
        ) 
       
     
    {\displaystyle \mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (3)} 
   
 In other words, 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}} 
   
  As the matrix is symmetric, the unperturbed eigenvectors are 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            N 
           
         
        
          ε 
          
            i 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
         
        ( 
        4 
        ) 
         
     
    {\displaystyle \delta \mathbf {x} _{i}=\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}\qquad (4)\quad } 
   
 
  
    
      
        
          ε 
          
            i 
            j 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          
            x 
           
          
            i 
           
         
       
     
    {\displaystyle \varepsilon _{ij}=\mathbf {x} _{0j}^{T}M\delta \mathbf {x} _{i}} 
   
 where the εij  
In the same way, substituting in (2), and removing higher order terms, we get 
  
    
      
        δ 
        
          
            x 
           
          
            j 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
         
        δ 
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        0 
        
          ( 
          5 
          ) 
         
       
     
    {\displaystyle \delta \mathbf {x} _{j}\mathbf {M} _{0}\mathbf {x} _{0i}+\mathbf {x} _{0j}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}\delta \mathbf {M} _{0}\mathbf {x} _{0i}=0\quad {(5)}} 
   
 
The derivation can go on with two forks.
First fork: get first eigenvalue perturbation [ edit ] Eigenvalue perturbation [ edit ] We start with (3)
  
    
      
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        ; 
       
     
    {\displaystyle \quad \mathbf {K} _{0}\delta \mathbf {x} _{i}+\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i};} 
   
  we left multiply with 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{T}} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}} 
   
 or
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}-\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i}} 
   
 We notice that it is the first order perturbation of the generalized Rayleigh quotient   with fixed 
  
    
      
        
          x 
          
            0 
            i 
           
         
       
     
    {\displaystyle x_{0i}} 
   
 
  
    
      
        R 
        ( 
        K 
        , 
        M 
        ; 
        
          x 
          
            0 
            i 
           
         
        ) 
        = 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        K 
        
          x 
          
            0 
            i 
           
         
        
          / 
         
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        
          x 
          
            0 
            i 
           
         
        , 
        
           with  
         
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        
          x 
          
            0 
            i 
           
         
        = 
        1 
       
     
    {\displaystyle R(K,M;x_{0i})=x_{0i}^{T}Kx_{0i}/x_{0i}^{T}Mx_{0i},{\text{ with }}x_{0i}^{T}Mx_{0i}=1} 
   
 
Moreover, for 
  
    
      
        M 
        = 
        I 
       
     
    {\displaystyle M=I} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        δ 
        K 
        
          x 
          
            0 
            i 
           
         
       
     
    {\displaystyle \delta \lambda _{i}=x_{0i}^{T}\delta Kx_{0i}} 
   
 Bauer-Fike  theorem which provides a bound for eigenvalue perturbation.
Eigenvector perturbation [ edit ] We left multiply (3) with 
  
    
      
        
          x 
          
            0 
            j 
           
          
            T 
           
         
       
     
    {\displaystyle x_{0j}^{T}} 
   
 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            K 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}\mathbf {K} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 We use 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        K 
        = 
        
          λ 
          
            0 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        M 
        
           and  
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}K=\lambda _{0j}\mathbf {x} _{0j}^{T}M{\text{ and }}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\mathbf {x} _{0i}=0,} 
   
 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          λ 
          
            0 
            j 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \lambda _{0j}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}.} 
   
 or
  
    
      
        ( 
        
          λ 
          
            0 
            j 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        ) 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle (\lambda _{0j}-\lambda _{0i})\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}+\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}.} 
   
 As the eigenvalues are assumed to be simple, for 
  
    
      
        j 
        ≠ 
        i 
       
     
    {\displaystyle j\neq i} 
   
 
  
    
      
        
          ϵ 
          
            i 
            j 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          
            
              − 
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                K 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
              + 
              
                λ 
                
                  0 
                  i 
                 
               
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                M 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              ( 
              
                λ 
                
                  0 
                  j 
                 
               
              − 
              
                λ 
                
                  0 
                  i 
                 
               
              ) 
             
           
         
        , 
        i 
        = 
        1 
        , 
        … 
        N 
        ; 
        j 
        = 
        1 
        , 
        … 
        N 
        ; 
        j 
        ≠ 
        i 
        . 
       
     
    {\displaystyle \epsilon _{ij}=\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}={\frac {-\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}}{(\lambda _{0j}-\lambda _{0i})}},i=1,\dots N;j=1,\dots N;j\neq i.} 
   
 Moreover (5) (the first order variation of (2) ) yields
  
    
      
        2 
        
          ϵ 
          
            i 
            i 
           
         
        = 
        2 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          x 
          
            i 
           
         
        = 
        − 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        M 
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle 2\epsilon _{ii}=2\mathbf {x} _{0i}^{T}\mathbf {M} _{0}\delta x_{i}=-\mathbf {x} _{0i}^{T}\delta M\mathbf {x} _{0i}.} 
   
 
  
    
      
        δ 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle \delta x_{i}} 
   
 
Second fork: Straightforward manipulations [ edit ] Substituting (4) into (3) and rearranging gives
  
    
      
        
          
            
              
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                ( 
                5 
                ) 
               
             
            
              
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
               
            
              
                ( 
                
                  applying  
                 
                
                  
                    K 
                   
                  
                    0 
                   
                 
                
                   to the sum 
                 
                ) 
               
             
            
              
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  λ 
                  
                    0 
                    j 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                δ 
                
                  K 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  ε 
                  
                    i 
                    j 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                + 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                δ 
                
                  M 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                + 
                δ 
                
                  λ 
                  
                    i 
                   
                 
                
                  
                    M 
                   
                  
                    0 
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
              
                ( 
                
                  using Eq.  
                 
                ( 
                1 
                ) 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {K} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&(5)\\\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {K} _{0}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&\\({\text{applying }}\mathbf {K} _{0}{\text{ to the sum}})\\\sum _{j=1}^{N}\varepsilon _{ij}\lambda _{0j}\mathbf {M} _{0}\mathbf {x} _{0j}+\delta \mathbf {K} \mathbf {x} _{0i}&=\lambda _{0i}\mathbf {M} _{0}\sum _{j=1}^{N}\varepsilon _{ij}\mathbf {x} _{0j}+\lambda _{0i}\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {M} _{0}\mathbf {x} _{0i}&&({\text{using Eq. }}(1))\end{aligned}}} 
   
 Because the eigenvectors are M 0 M 0 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          λ 
          
            0 
            i 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\varepsilon _{ii}\lambda _{0i}\mathbf {M} _{0}\mathbf {x} _{0i}+\mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 By use of equation (1) again:
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            K 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          ε 
          
            i 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
        ( 
        6 
        ) 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\mathbf {K} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\varepsilon _{ii}\mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.\qquad (6)} 
   
 The two terms containing εii  
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            K 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\mathbf {K} _{0}\mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 Canceling those terms in (6) leaves
  
    
      
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          
            M 
           
          
            0 
           
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \mathbf {x} _{0i}^{\top }\delta \mathbf {K} \mathbf {x} _{0i}=\lambda _{0i}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}+\delta \lambda _{i}\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}.} 
   
 Rearranging gives
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  i 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                
                  x 
                 
                
                  0 
                  i 
                 
                
                  ⊤ 
                 
               
              
                
                  M 
                 
                
                  0 
                 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
           
         
       
     
    {\displaystyle \delta \lambda _{i}={\frac {\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\mathbf {x} _{0i}^{\top }\mathbf {M} _{0}\mathbf {x} _{0i}}}} 
   
 But by (2), this denominator is equal to 1. Thus
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        
          ( 
          
            δ 
            
              K 
             
            − 
            
              λ 
              
                0 
                i 
               
             
            δ 
            
              M 
             
           
          ) 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}.} 
   
 Then, as 
  
    
      
        
          λ 
          
            i 
           
         
        ≠ 
        
          λ 
          
            k 
           
         
       
     
    {\displaystyle \lambda _{i}\neq \lambda _{k}} 
   
 
  
    
      
        i 
        ≠ 
        k 
       
     
    {\displaystyle i\neq k} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            k 
           
          
            ⊤ 
           
         
       
     
    {\displaystyle \mathbf {x} _{0k}^{\top }} 
   
 
  
    
      
        
          ε 
          
            i 
            k 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  k 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                λ 
                
                  0 
                  i 
                 
               
              − 
              
                λ 
                
                  0 
                  k 
                 
               
             
           
         
        , 
        i 
        ≠ 
        k 
        . 
       
     
    {\displaystyle \varepsilon _{ik}={\frac {\mathbf {x} _{0k}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0k}}},\qquad i\neq k.} 
   
 Or by changing the name of the indices:
  
    
      
        
          ε 
          
            i 
            j 
           
         
        = 
        
          
            
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  ⊤ 
                 
               
              
                ( 
                
                  δ 
                  
                    K 
                   
                  − 
                  
                    λ 
                    
                      0 
                      i 
                     
                   
                  δ 
                  
                    M 
                   
                 
                ) 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              
                λ 
                
                  0 
                  i 
                 
               
              − 
              
                λ 
                
                  0 
                  j 
                 
               
             
           
         
        , 
        i 
        ≠ 
        j 
        . 
       
     
    {\displaystyle \varepsilon _{ij}={\frac {\mathbf {x} _{0j}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0j}}},\qquad i\neq j.} 
   
 To find εii  
  
    
      
        
          
            x 
           
          
            i 
           
          
            ⊤ 
           
         
        
          M 
         
        
          
            x 
           
          
            i 
           
         
        = 
        1 
       
     
    {\displaystyle \mathbf {x} _{i}^{\top }\mathbf {M} \mathbf {x} _{i}=1} 
   
 implies:
  
    
      
        
          ε 
          
            i 
            i 
           
         
        = 
        − 
        
          
            
              1 
              2 
             
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            ⊤ 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        . 
       
     
    {\displaystyle \varepsilon _{ii}=-{\tfrac {1}{2}}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}.} 
   
 Summary of the first order perturbation result [ edit ] In the case where all the matrices are Hermitian positive definite and all the eigenvalues are distinct 
  
    
      
        
          
            
              
                
                  λ 
                  
                    i 
                   
                 
               
              
                = 
                
                  λ 
                  
                    0 
                    i 
                   
                 
                + 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                  
                    ⊤ 
                   
                 
                
                  ( 
                  
                    δ 
                    
                      K 
                     
                    − 
                    
                      λ 
                      
                        0 
                        i 
                       
                     
                    δ 
                    
                      M 
                     
                   
                  ) 
                 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
               
             
            
              
                
                  
                    x 
                   
                  
                    i 
                   
                 
               
              
                = 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        
                          1 
                          2 
                         
                       
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                      
                        ⊤ 
                       
                     
                    δ 
                    
                      M 
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                     
                   
                  ) 
                 
                + 
                
                  ∑ 
                  
                    
                      
                        j 
                        = 
                        1 
                       
                      
                        j 
                        ≠ 
                        i 
                       
                     
                   
                  
                    N 
                   
                 
                
                  
                    
                      
                        
                          x 
                         
                        
                          0 
                          j 
                         
                        
                          ⊤ 
                         
                       
                      
                        ( 
                        
                          δ 
                          
                            K 
                           
                          − 
                          
                            λ 
                            
                              0 
                              i 
                             
                           
                          δ 
                          
                            M 
                           
                         
                        ) 
                       
                      
                        
                          x 
                         
                        
                          0 
                          i 
                         
                       
                     
                    
                      
                        λ 
                        
                          0 
                          i 
                         
                       
                      − 
                      
                        λ 
                        
                          0 
                          j 
                         
                       
                     
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda _{i}&=\lambda _{0i}+\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}\\\mathbf {x} _{i}&=\mathbf {x} _{0i}\left(1-{\tfrac {1}{2}}\mathbf {x} _{0i}^{\top }\delta \mathbf {M} \mathbf {x} _{0i}\right)+\sum _{j=1 \atop j\neq i}^{N}{\frac {\mathbf {x} _{0j}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}}{\lambda _{0i}-\lambda _{0j}}}\mathbf {x} _{0j}\end{aligned}}} 
   
 for infinitesimal 
  
    
      
        δ 
        
          K 
         
       
     
    {\displaystyle \delta \mathbf {K} } 
   
 
  
    
      
        δ 
        
          M 
         
       
     
    {\displaystyle \delta \mathbf {M} } 
   
 
So far, we have not proved that these higher order terms may be neglected. This point may be derived using the implicit function theorem; in next section, we summarize the use of this theorem in order to obtain a first order expansion.
Theoretical derivation [ edit ] Perturbation of an implicit function. [ edit ] In the next paragraph, we shall  use the Implicit function theorem  (Statement of the theorem ); we  notice that for a continuously differentiable function 
  
    
      
        f 
        : 
        
          
            R 
           
          
            n 
            + 
            m 
           
         
        → 
        
          
            R 
           
          
            m 
           
         
        , 
        f 
        : 
        ( 
        x 
        , 
        y 
        ) 
        ↦ 
        f 
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle f:\mathbb {R} ^{n+m}\to \mathbb {R} ^{m},\;f:(x,y)\mapsto f(x,y)} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            b 
           
         
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
       
     
    {\displaystyle J_{f,b}(x_{0},y_{0})} 
   
 
  
    
      
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
       
     
    {\displaystyle (x_{0},y_{0})} 
   
 
  
    
      
        f 
        ( 
        
          x 
          
            0 
           
         
        , 
        
          y 
          
            0 
           
         
        ) 
        = 
        0 
       
     
    {\displaystyle f(x_{0},y_{0})=0} 
   
 
  
    
      
        f 
        ( 
        x 
        , 
        y 
        ) 
        = 
        0 
       
     
    {\displaystyle f(x,y)=0} 
   
 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        
          x 
          
            0 
           
         
       
     
    {\displaystyle x_{0}} 
   
 
  
    
      
        y 
        = 
        g 
        ( 
        x 
        ) 
       
     
    {\displaystyle y=g(x)} 
   
 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            y 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        
          J 
          
            g 
            , 
            x 
           
         
        ( 
        x 
        ) 
        + 
        
          J 
          
            f 
            , 
            x 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        = 
        0 
        ( 
        6 
        ) 
       
     
    {\displaystyle J_{f,y}(x,g(x))J_{g,x}(x)+J_{f,x}(x,g(x))=0\quad (6)} 
   
 As soon as the hypothesis of the theorem is satisfied, the Jacobian matrix of 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        f 
        ( 
        
          x 
          
            0 
           
         
        + 
        δ 
        x 
        , 
        
          y 
          
            0 
           
         
        + 
        δ 
        y 
        ) 
        = 
        0 
       
     
    {\displaystyle f(x_{0}+\delta x,y_{0}+\delta y)=0} 
   
 
  
    
      
        
          J 
          
            f 
            , 
            x 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        δ 
        x 
        + 
        
          J 
          
            f 
            , 
            y 
           
         
        ( 
        x 
        , 
        g 
        ( 
        x 
        ) 
        ) 
        δ 
        y 
        = 
        0 
       
     
    {\displaystyle J_{f,x}(x,g(x))\delta x+J_{f,y}(x,g(x))\delta y=0} 
   
 
  
    
      
        δ 
        y 
        = 
        
          J 
          
            g 
            , 
            x 
           
         
        ( 
        x 
        ) 
        δ 
        x 
       
     
    {\displaystyle \delta y=J_{g,x}(x)\delta x} 
   
 
  
    
      
        ( 
        6 
        ) 
       
     
    {\displaystyle (6)} 
   
 
Eigenvalue perturbation: a theoretical basis. [ edit ] We use the previous paragraph (Perturbation of an implicit function) with somewhat different notations suited to eigenvalue perturbation; we introduce 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        : 
        
          
            R 
           
          
            2 
            
              n 
              
                2 
               
             
           
         
        × 
        
          
            R 
           
          
            n 
            + 
            1 
           
         
        → 
        
          
            R 
           
          
            n 
            + 
            1 
           
         
       
     
    {\displaystyle {\tilde {f}}:\mathbb {R} ^{2n^{2}}\times \mathbb {R} ^{n+1}\to \mathbb {R} ^{n+1}} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        K 
        , 
        M 
        , 
        λ 
        , 
        x 
        ) 
        = 
        
          
            
              ( 
             
            
              
                f 
                ( 
                K 
                , 
                M 
                , 
                λ 
                , 
                x 
                ) 
               
              
                
                  f 
                  
                    n 
                    + 
                    1 
                   
                 
                ( 
                x 
                ) 
               
             
            
              ) 
             
           
         
       
     
    {\displaystyle {\tilde {f}}(K,M,\lambda ,x)={\binom {f(K,M,\lambda ,x)}{f_{n+1}(x)}}} 
   
 
  
    
      
        f 
        ( 
        K 
        , 
        M 
        , 
        λ 
        , 
        x 
        ) 
        = 
        K 
        x 
        − 
        λ 
        x 
        , 
        
          f 
          
            n 
            + 
            1 
           
         
        ( 
        M 
        , 
        x 
        ) 
        = 
        
          x 
          
            T 
           
         
        M 
        x 
        − 
        1 
       
     
    {\displaystyle f(K,M,\lambda ,x)=Kx-\lambda x,f_{n+1}(M,x)=x^{T}Mx-1} 
   
 Implicit function theorem , we study the invertibility of the Jacobian 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            λ 
            , 
            x 
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            0 
            i 
           
         
        , 
        
          x 
          
            0 
            i 
           
         
        ) 
       
     
    {\displaystyle J_{{\tilde {f}};\lambda ,x}(K,M;\lambda _{0i},x_{0i})} 
   
 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            λ 
            , 
            x 
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            i 
           
         
        , 
        
          x 
          
            i 
           
         
        ) 
        ( 
        δ 
        λ 
        , 
        δ 
        x 
        ) 
        = 
        
          
            
              ( 
             
            
              
                − 
                M 
                
                  x 
                  
                    i 
                   
                 
               
              0 
             
            
              ) 
             
           
         
        δ 
        λ 
        + 
        
          
            
              ( 
             
            
              
                K 
                − 
                λ 
                M 
               
              
                2 
                
                  x 
                  
                    i 
                   
                  
                    T 
                   
                 
                M 
               
             
            
              ) 
             
           
         
        δ 
        
          x 
          
            i 
           
         
       
     
    {\displaystyle J_{{\tilde {f}};\lambda ,x}(K,M;\lambda _{i},x_{i})(\delta \lambda ,\delta x)={\binom {-Mx_{i}}{0}}\delta \lambda +{\binom {K-\lambda M}{2x_{i}^{T}M}}\delta x_{i}} 
   
 
  
    
      
        
          J 
          
            
              
                
                  f 
                  ~ 
                 
               
             
            ; 
            
              λ 
              
                0 
                i 
               
             
            , 
            
              x 
              
                0 
                i 
               
             
           
         
        ( 
        K 
        , 
        M 
        ; 
        
          λ 
          
            0 
            i 
           
         
        , 
        
          x 
          
            0 
            i 
           
         
        ) 
        ( 
        δ 
        
          λ 
          
            i 
           
         
        , 
        δ 
        
          x 
          
            i 
           
         
        ) 
        = 
       
     
    {\displaystyle J_{{\tilde {f}};\lambda _{0i},x_{0i}}(K,M;\lambda _{0i},x_{0i})(\delta \lambda _{i},\delta x_{i})=} 
   
 
  
    
      
        
          
            
              ( 
             
            
              y 
              
                y 
                
                  n 
                  + 
                  1 
                 
               
             
            
              ) 
             
           
         
       
     
    {\displaystyle {\binom {y}{y_{n+1}}}} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        − 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        y 
        , 
        
           and  
         
        ( 
        
          λ 
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            j 
           
         
        ) 
        
          x 
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            j 
           
          
            T 
           
         
        y 
        , 
        j 
        = 
        1 
        , 
        … 
        , 
        n 
        , 
        j 
        ≠ 
        i 
        ; 
       
     
    {\displaystyle \delta \lambda _{i}=-x_{0i}^{T}y,\;{\text{ and }}(\lambda _{0i}-\lambda _{0j})x_{0j}^{T}M\delta x_{i}=x_{j}^{T}y,j=1,\dots ,n,j\neq i\;;} 
   
 
  
    
      
        
           or  
         
        
          x 
          
            0 
            j 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            j 
           
          
            T 
           
         
        y 
        
          / 
         
        ( 
        
          λ 
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            j 
           
         
        ) 
        , 
        
           and  
         
        2 
        
          x 
          
            0 
            i 
           
          
            T 
           
         
        M 
        δ 
        
          x 
          
            i 
           
         
        = 
        
          y 
          
            n 
            + 
            1 
           
         
       
     
    {\displaystyle {\text{ or }}x_{0j}^{T}M\delta x_{i}=x_{j}^{T}y/(\lambda _{0i}-\lambda _{0j}),{\text{ and }}\;2x_{0i}^{T}M\delta x_{i}=y_{n+1}} 
   
 
  
    
      
        
          λ 
          
            i 
           
         
       
     
    {\displaystyle \lambda _{i}} 
   
 
  
    
      
        
          x 
          
            0 
            j 
           
         
        , 
        j 
        = 
        1 
        , 
        … 
        , 
        n 
       
     
    {\displaystyle x_{0j},j=1,\dots ,n} 
   
 
The implicit function theorem  provides a continuously differentiable function 
  
    
      
        ( 
        K 
        , 
        M 
        ) 
        ↦ 
        ( 
        
          λ 
          
            i 
           
         
        ( 
        K 
        , 
        M 
        ) 
        , 
        
          x 
          
            i 
           
         
        ( 
        K 
        , 
        M 
        ) 
        ) 
       
     
    {\displaystyle (K,M)\mapsto (\lambda _{i}(K,M),x_{i}(K,M))} 
   
 little o notation :
  
    
      
        
          λ 
          
            i 
           
         
        = 
        
          λ 
          
            0 
            i 
           
         
        + 
        δ 
        
          λ 
          
            i 
           
         
        + 
        o 
        ( 
        ‖ 
        δ 
        K 
        ‖ 
        + 
        ‖ 
        δ 
        M 
        ‖ 
        ) 
       
     
    {\displaystyle \lambda _{i}=\lambda _{0i}+\delta \lambda _{i}+o(\|\delta K\|+\|\delta M\|)} 
   
 
  
    
      
        
          x 
          
            i 
           
         
        = 
        
          x 
          
            0 
            i 
           
         
        + 
        δ 
        
          x 
          
            i 
           
         
        + 
        o 
        ( 
        ‖ 
        δ 
        K 
        ‖ 
        + 
        ‖ 
        δ 
        M 
        ‖ 
        ) 
       
     
    {\displaystyle x_{i}=x_{0i}+\delta x_{i}+o(\|\delta K\|+\|\delta M\|)} 
   
 
  
    
      
        δ 
        
          λ 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          K 
         
        
          
            x 
           
          
            0 
            i 
           
         
        − 
        
          λ 
          
            0 
            i 
           
         
        
          
            x 
           
          
            0 
            i 
           
          
            T 
           
         
        δ 
        
          M 
         
        
          
            x 
           
          
            0 
            i 
           
         
        ; 
       
     
    {\displaystyle \delta \lambda _{i}=\mathbf {x} _{0i}^{T}\delta \mathbf {K} \mathbf {x} _{0i}-\lambda _{0i}\mathbf {x} _{0i}^{T}\delta \mathbf {M} \mathrm {x} _{0i};} 
   
 
  
    
      
        δ 
        
          x 
          
            i 
           
         
        = 
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        
          
            x 
           
          
            0 
            j 
           
         
        
           with 
         
       
     
    {\displaystyle \delta x_{i}=\mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}\mathbf {x} _{0j}{\text{ with}}} 
   
 
  
    
      
        
          
            x 
           
          
            0 
            j 
           
          
            T 
           
         
        
          
            M 
           
          
            0 
           
         
        δ 
        
          
            x 
           
          
            i 
           
         
        = 
        
          
            
              − 
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                K 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
              + 
              
                λ 
                
                  0 
                  i 
                 
               
              
                
                  x 
                 
                
                  0 
                  j 
                 
                
                  T 
                 
               
              δ 
              
                M 
               
              
                
                  x 
                 
                
                  0 
                  i 
                 
               
             
            
              ( 
              
                λ 
                
                  0 
                  j 
                 
               
              − 
              
                λ 
                
                  0 
                  i 
                 
               
              ) 
             
           
         
        , 
        i 
        = 
        1 
        , 
        … 
        n 
        ; 
        j 
        = 
        1 
        , 
        … 
        n 
        ; 
        j 
        ≠ 
        i 
        . 
       
     
    {\displaystyle \mathbf {x} _{0j}^{T}\mathbf {M} _{0}\delta \mathbf {x} _{i}={\frac {-\mathbf {x} _{0j}^{T}\delta \mathbf {K} \mathbf {x} _{0i}+\lambda _{0i}\mathbf {x} _{0j}^{T}\delta \mathbf {M} \mathrm {x} _{0i}}{(\lambda _{0j}-\lambda _{0i})}},i=1,\dots n;j=1,\dots n;j\neq i.} 
   
 
Results of sensitivity analysis with respect to the entries of the matrices [ edit ] This means it is possible to efficiently do a sensitivity analysis  on λi  K k ℓK ℓk  (2 − δ k ℓ  term.)
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        λ 
                        
                          i 
                         
                       
                     
                    
                      ∂ 
                      
                        
                          K 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    ∂ 
                    
                      ∂ 
                      
                        
                          K 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
                
                  ( 
                  
                    
                      λ 
                      
                        0 
                        i 
                       
                     
                    + 
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                      
                        ⊤ 
                       
                     
                    
                      ( 
                      
                        δ 
                        
                          K 
                         
                        − 
                        
                          λ 
                          
                            0 
                            i 
                           
                         
                        δ 
                        
                          M 
                         
                       
                      ) 
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                     
                   
                  ) 
                 
                = 
                
                  x 
                  
                    0 
                    i 
                    ( 
                    k 
                    ) 
                   
                 
                
                  x 
                  
                    0 
                    i 
                    ( 
                    ℓ 
                    ) 
                   
                 
                
                  ( 
                  
                    2 
                    − 
                    
                      δ 
                      
                        k 
                        ℓ 
                       
                     
                   
                  ) 
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        λ 
                        
                          i 
                         
                       
                     
                    
                      ∂ 
                      
                        
                          M 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    ∂ 
                    
                      ∂ 
                      
                        
                          M 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
                
                  ( 
                  
                    
                      λ 
                      
                        0 
                        i 
                       
                     
                    + 
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                      
                        ⊤ 
                       
                     
                    
                      ( 
                      
                        δ 
                        
                          K 
                         
                        − 
                        
                          λ 
                          
                            0 
                            i 
                           
                         
                        δ 
                        
                          M 
                         
                       
                      ) 
                     
                    
                      
                        x 
                       
                      
                        0 
                        i 
                       
                     
                   
                  ) 
                 
                = 
                − 
                
                  λ 
                  
                    i 
                   
                 
                
                  x 
                  
                    0 
                    i 
                    ( 
                    k 
                    ) 
                   
                 
                
                  x 
                  
                    0 
                    i 
                    ( 
                    ℓ 
                    ) 
                   
                 
                
                  ( 
                  
                    2 
                    − 
                    
                      δ 
                      
                        k 
                        ℓ 
                       
                     
                   
                  ) 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \lambda _{i}}{\partial \mathbf {K} _{(k\ell )}}}&={\frac {\partial }{\partial \mathbf {K} _{(k\ell )}}}\left(\lambda _{0i}+\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}\right)=x_{0i(k)}x_{0i(\ell )}\left(2-\delta _{k\ell }\right)\\{\frac {\partial \lambda _{i}}{\partial \mathbf {M} _{(k\ell )}}}&={\frac {\partial }{\partial \mathbf {M} _{(k\ell )}}}\left(\lambda _{0i}+\mathbf {x} _{0i}^{\top }\left(\delta \mathbf {K} -\lambda _{0i}\delta \mathbf {M} \right)\mathbf {x} _{0i}\right)=-\lambda _{i}x_{0i(k)}x_{0i(\ell )}\left(2-\delta _{k\ell }\right).\end{aligned}}} 
   
 Similarly
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        
                          x 
                         
                        
                          i 
                         
                       
                     
                    
                      ∂ 
                      
                        
                          K 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    
                      
                        j 
                        = 
                        1 
                       
                      
                        j 
                        ≠ 
                        i 
                       
                     
                   
                  
                    N 
                   
                 
                
                  
                    
                      
                        x 
                        
                          0 
                          j 
                          ( 
                          k 
                          ) 
                         
                       
                      
                        x 
                        
                          0 
                          i 
                          ( 
                          ℓ 
                          ) 
                         
                       
                      
                        ( 
                        
                          2 
                          − 
                          
                            δ 
                            
                              k 
                              ℓ 
                             
                           
                         
                        ) 
                       
                     
                    
                      
                        λ 
                        
                          0 
                          i 
                         
                       
                      − 
                      
                        λ 
                        
                          0 
                          j 
                         
                       
                     
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        
                          x 
                         
                        
                          i 
                         
                       
                     
                    
                      ∂ 
                      
                        
                          M 
                         
                        
                          ( 
                          k 
                          ℓ 
                          ) 
                         
                       
                     
                   
                 
               
              
                = 
                − 
                
                  
                    x 
                   
                  
                    0 
                    i 
                   
                 
                
                  
                    
                      
                        x 
                        
                          0 
                          i 
                          ( 
                          k 
                          ) 
                         
                       
                      
                        x 
                        
                          0 
                          i 
                          ( 
                          ℓ 
                          ) 
                         
                       
                     
                    2 
                   
                 
                ( 
                2 
                − 
                
                  δ 
                  
                    k 
                    ℓ 
                   
                 
                ) 
                − 
                
                  ∑ 
                  
                    
                      
                        j 
                        = 
                        1 
                       
                      
                        j 
                        ≠ 
                        i 
                       
                     
                   
                  
                    N 
                   
                 
                
                  
                    
                      
                        λ 
                        
                          0 
                          i 
                         
                       
                      
                        x 
                        
                          0 
                          j 
                          ( 
                          k 
                          ) 
                         
                       
                      
                        x 
                        
                          0 
                          i 
                          ( 
                          ℓ 
                          ) 
                         
                       
                     
                    
                      
                        λ 
                        
                          0 
                          i 
                         
                       
                      − 
                      
                        λ 
                        
                          0 
                          j 
                         
                       
                     
                   
                 
                
                  
                    x 
                   
                  
                    0 
                    j 
                   
                 
                
                  ( 
                  
                    2 
                    − 
                    
                      δ 
                      
                        k 
                        ℓ 
                       
                     
                   
                  ) 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \mathbf {x} _{i}}{\partial \mathbf {K} _{(k\ell )}}}&=\sum _{j=1 \atop j\neq i}^{N}{\frac {x_{0j(k)}x_{0i(\ell )}\left(2-\delta _{k\ell }\right)}{\lambda _{0i}-\lambda _{0j}}}\mathbf {x} _{0j}\\{\frac {\partial \mathbf {x} _{i}}{\partial \mathbf {M} _{(k\ell )}}}&=-\mathbf {x} _{0i}{\frac {x_{0i(k)}x_{0i(\ell )}}{2}}(2-\delta _{k\ell })-\sum _{j=1 \atop j\neq i}^{N}{\frac {\lambda _{0i}x_{0j(k)}x_{0i(\ell )}}{\lambda _{0i}-\lambda _{0j}}}\mathbf {x} _{0j}\left(2-\delta _{k\ell }\right).\end{aligned}}} 
   
 [ edit ] A simple case is 
  
    
      
        K 
        = 
        
          
            [ 
            
              
                
                  2 
                 
                
                  b 
                 
               
              
                
                  b 
                 
                
                  0 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle K={\begin{bmatrix}2&b\\b&0\end{bmatrix}}} 
   
 [1]  (see introduction in Wikipedia  WIMS ) or using Sage SageMath . You get the smallest eigenvalue  
  
    
      
        λ 
        = 
        − 
        
          [ 
          
            
              
                
                  b 
                  
                    2 
                   
                 
                + 
                1 
               
             
            + 
            1 
           
          ] 
         
       
     
    {\displaystyle \lambda =-\left[{\sqrt {b^{2}+1}}+1\right]} 
   
 
  
    
      
        
          
            
              ∂ 
              λ 
             
            
              ∂ 
              b 
             
           
         
        = 
        
          
            
              − 
              x 
             
            
              
                x 
                
                  2 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle {\frac {\partial \lambda }{\partial b}}={\frac {-x}{\sqrt {x^{2}+1}}}} 
   
 
  
    
      
        
          
            
              
                x 
                ~ 
               
             
           
          
            0 
           
         
        = 
        [ 
        x 
        , 
        − 
        ( 
        
          
            
              x 
              
                2 
               
             
            + 
            1 
           
         
        + 
        1 
        ) 
        ) 
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle {\tilde {x}}_{0}=[x,-({\sqrt {x^{2}+1}}+1))]^{T}} 
   
 
  
    
      
        
          x 
          
            01 
           
         
        
          x 
          
            02 
           
         
        = 
        
          
            
              
                x 
                ~ 
               
             
           
          
            01 
           
         
        
          
            
              
                x 
                ~ 
               
             
           
          
            02 
           
         
        
          / 
         
        ‖ 
        
          
            
              
                x 
                ~ 
               
             
           
          
            0 
           
         
        
          ‖ 
          
            2 
           
         
       
     
    {\displaystyle x_{01}x_{02}={\tilde {x}}_{01}{\tilde {x}}_{02}/\|{\tilde {x}}_{0}\|^{2}} 
   
 
  
    
      
        ‖ 
        
          
            
              
                x 
                ~ 
               
             
           
          
            0 
           
         
        
          ‖ 
          
            2 
           
         
        = 
        2 
        
          
            
              x 
              
                2 
               
             
            + 
            1 
           
         
        ( 
        
          
            
              x 
              
                2 
               
             
            + 
            1 
           
         
        + 
        1 
        ) 
       
     
    {\displaystyle \|{\tilde {x}}_{0}\|^{2}=2{\sqrt {x^{2}+1}}({\sqrt {x^{2}+1}}+1)} 
   
 
  
    
      
        
          
            
              
                x 
                ~ 
               
             
           
          
            01 
           
         
        
          
            
              
                x 
                ~ 
               
             
           
          
            02 
           
         
        = 
        − 
        x 
        ( 
        
          
            
              x 
              
                2 
               
             
            + 
            1 
           
         
        + 
        1 
        ) 
       
     
    {\displaystyle {\tilde {x}}_{01}{\tilde {x}}_{02}=-x({\sqrt {x^{2}+1}}+1)} 
   
 
  
    
      
        
          x 
          
            01 
           
         
        
          x 
          
            02 
           
         
        = 
        − 
        
          
            x 
            
              2 
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle x_{01}x_{02}=-{\frac {x}{2{\sqrt {x^{2}+1}}}}} 
   
 
  
    
      
        
          
            
              ∂ 
              λ 
             
            
              ∂ 
              b 
             
           
         
        = 
        2 
        
          x 
          
            01 
           
         
        
          x 
          
            02 
           
         
       
     
    {\displaystyle {\frac {\partial \lambda }{\partial b}}=2x_{01}x_{02}} 
   
 
  
    
      
        δ 
        λ 
        = 
        2 
        
          x 
          
            01 
           
         
        
          x 
          
            02 
           
         
        δ 
        b 
       
     
    {\displaystyle \delta \lambda =2x_{01}x_{02}\delta b} 
   
 
Existence of eigenvectors [ edit ] Note that in the above example we assumed that both the unperturbed and the perturbed systems involved symmetric matrices , which guaranteed the existence of 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        
          K 
         
       
     
    {\displaystyle \mathbf {K} } 
   
 
  
    
      
        
          M 
         
       
     
    {\displaystyle \mathbf {M} } 
   
 simultaneously diagonalizable .
The case of repeated eigenvalues [ edit ] A technical report of Rellich  [ 6] archive.org . We draw an example in which the eigenvectors have a nasty behavior.
Consider the following matrix 
  
    
      
        B 
        ( 
        ϵ 
        ) 
        = 
        ϵ 
        
          
            [ 
            
              
                
                  cos 
                   
                  ( 
                  2 
                  
                    / 
                   
                  ϵ 
                  ) 
                 
                
                  , 
                  sin 
                   
                  ( 
                  2 
                  
                    / 
                   
                  ϵ 
                  ) 
                 
               
              
                
                  sin 
                   
                  ( 
                  2 
                  
                    / 
                   
                  ϵ 
                  ) 
                 
                
                  , 
                  s 
                  cos 
                   
                  ( 
                  2 
                  
                    / 
                   
                  ϵ 
                  ) 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle B(\epsilon )=\epsilon {\begin{bmatrix}\cos(2/\epsilon )&,\sin(2/\epsilon )\\\sin(2/\epsilon )&,s\cos(2/\epsilon )\end{bmatrix}}} 
   
 
  
    
      
        A 
        ( 
        ϵ 
        ) 
        = 
        I 
        − 
        
          e 
          
            − 
            1 
            
              / 
             
            
              ϵ 
              
                2 
               
             
           
         
        B 
        ; 
       
     
    {\displaystyle A(\epsilon )=I-e^{-1/\epsilon ^{2}}B;} 
   
 
  
    
      
        A 
        ( 
        0 
        ) 
        = 
        I 
        . 
       
     
    {\displaystyle A(0)=I.} 
   
 
  
    
      
        ϵ 
        ≠ 
        0 
       
     
    {\displaystyle \epsilon \neq 0} 
   
 
  
    
      
        A 
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle A(\epsilon )} 
   
 
  
    
      
        
          Φ 
          
            1 
           
         
        = 
        [ 
        cos 
         
        ( 
        1 
        
          / 
         
        ϵ 
        ) 
        , 
        − 
        sin 
         
        ( 
        1 
        
          / 
         
        ϵ 
        ) 
        
          ] 
          
            T 
           
         
        ; 
        
          Φ 
          
            2 
           
         
        = 
        [ 
        sin 
         
        ( 
        1 
        
          / 
         
        ϵ 
        ) 
        , 
        − 
        cos 
         
        ( 
        1 
        
          / 
         
        ϵ 
        ) 
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle \Phi ^{1}=[\cos(1/\epsilon ),-\sin(1/\epsilon )]^{T};\Phi ^{2}=[\sin(1/\epsilon ),-\cos(1/\epsilon )]^{T}} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        1 
        − 
        
          e 
          
            − 
            1 
            
              / 
             
            
              ϵ 
              
                2 
               
             
            ) 
           
         
        , 
        
          λ 
          
            2 
           
         
        = 
        1 
        + 
        
          e 
          
            − 
            1 
            
              / 
             
            
              ϵ 
              
                2 
               
             
            ) 
           
         
       
     
    {\displaystyle \lambda _{1}=1-e^{-1/\epsilon ^{2})},\lambda _{2}=1+e^{-1/\epsilon ^{2})}} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
        ≠ 
        
          λ 
          
            2 
           
         
       
     
    {\displaystyle \lambda _{1}\neq \lambda _{2}} 
   
 
  
    
      
        ϵ 
        ≠ 
        0 
       
     
    {\displaystyle \epsilon \neq 0} 
   
 
  
    
      
        
          u 
          
            j 
           
         
        ( 
        ϵ 
        ) 
        , 
        j 
        = 
        1 
        , 
        2 
        , 
       
     
    {\displaystyle u^{j}(\epsilon ),j=1,2,} 
   
 
  
    
      
        
          λ 
          
            j 
           
         
        ( 
        ϵ 
        ) 
        , 
        j 
        = 
        1 
        , 
        2 
       
     
    {\displaystyle \lambda _{j}(\epsilon ),j=1,2} 
   
 
  
    
      
        
          u 
          
            j 
           
         
        = 
        
          e 
          
            
              α 
              
                j 
               
             
            ( 
            ϵ 
            ) 
           
         
        
          Φ 
          
            j 
           
         
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle u^{j}=e^{\alpha _{j}(\epsilon )}\Phi ^{j}(\epsilon )} 
   
 
  
    
      
        
          α 
          
            j 
           
         
        , 
        j 
        = 
        1 
        , 
        2 
       
     
    {\displaystyle \alpha _{j},j=1,2} 
   
 
  
    
      
        ϵ 
        ≠ 
        0. 
       
     
    {\displaystyle \epsilon \neq 0.} 
   
 
  
    
      
        
          α 
          
            1 
           
         
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle \alpha _{1}(\epsilon )} 
   
 
  
    
      
        
          u 
          
            1 
           
         
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle u^{1}(\epsilon )} 
   
 
  
    
      
        ϵ 
        → 
        0 
        , 
       
     
    {\displaystyle \epsilon \rightarrow 0,} 
   
 
  
    
      
        
          | 
         
        
          u 
          
            1 
           
         
        ( 
        ϵ 
        ) 
        
          | 
         
        = 
        
          | 
         
        cos 
         
        ( 
        1 
        
          / 
         
        ϵ 
        ) 
        
          | 
         
       
     
    {\displaystyle |u^{1}(\epsilon )|=|\cos(1/\epsilon )|} 
   
 
  
    
      
        ϵ 
        → 
        0. 
       
     
    {\displaystyle \epsilon \rightarrow 0.} 
   
 
Note in this example that 
  
    
      
        
          A 
          
            j 
            k 
           
         
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle A_{jk}(\epsilon )} 
   
 
  
    
      
        A 
        ( 
        ϵ 
        ) 
       
     
    {\displaystyle A(\epsilon )} 
   
 
This example is less nasty that the previous one. Suppose 
  
    
      
        [ 
        
          K 
          
            0 
           
         
        ] 
       
     
    {\displaystyle [K_{0}]} 
   
 identity matrix , any vector is an eigenvector; then 
  
    
      
        
          u 
          
            0 
           
         
        = 
        [ 
        1 
        , 
        1 
        
          ] 
          
            T 
           
         
        
          / 
         
        
          
            2 
           
         
       
     
    {\displaystyle u_{0}=[1,1]^{T}/{\sqrt {2}}} 
   
 
  
    
      
        [ 
        K 
        ] 
        = 
        [ 
        
          K 
          
            0 
           
         
        ] 
        + 
        
          
            [ 
            
              
                
                  ϵ 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle [K]=[K_{0}]+{\begin{bmatrix}\epsilon &0\\0&0\end{bmatrix}}} 
   
 
Then the eigenvectors are 
  
    
      
        
          v 
          
            1 
           
         
        = 
        [ 
        1 
        , 
        0 
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle v_{1}=[1,0]^{T}} 
   
 
  
    
      
        
          v 
          
            2 
           
         
        = 
        [ 
        0 
        , 
        1 
        
          ] 
          
            T 
           
         
       
     
    {\displaystyle v_{2}=[0,1]^{T}} 
   
 
  
    
      
        ϵ 
       
     
    {\displaystyle \epsilon } 
   
 
  
    
      
        ‖ 
        
          u 
          
            0 
           
         
        − 
        
          v 
          
            1 
           
         
        ‖ 
       
     
    {\displaystyle \|u_{0}-v_{1}\|} 
   
 
Ren-Cang Li (2014). "Matrix Perturbation Theory". In Hogben, Leslie  (ed.). Handbook of linear algebra  (Second ed.). CRC Press. ISBN  978-1466507289  Rellich, F., & Berkowitz, J. (1969). Perturbation theory of eigenvalue problems. CRC Press  . {{cite book }}:  CS1 maint: multiple names: authors list (link )Bhatia, R. (1987). Perturbation bounds for matrix eigenvalues. SIAM. Rellich, Franz (1954). Perturbation theory of eigenvalue problems . New-York: Courant Institute of Mathematical Sciences, New-York University. Simon, B. (1982). Large orders and summability of eigenvalue perturbation theory: a mathematical overview. International Journal of Quantum Chemistry , 21(1), 3-25. 
Crandall, M. G., & Rabinowitz, P. H. (1973). Bifurcation, perturbation of simple eigenvalues, and linearized stability. Archive for Rational Mechanics and Analysis, 52(2), 161-180. 
Stewart, G. W. (1973). Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM review, 15(4), 727-764. 
Löwdin, P. O. (1962). Studies in perturbation theory. IV. Solution of eigenvalue problem by projection operator formalism. Journal of Mathematical Physics , 3(5), 969-982.