Delsarte–Goethals code
Appearance
	
	
|  | This article may be too technical for most readers to understand.  (May 2017) | 
The Delsarte–Goethals code is a type of error-correcting code.
History
[edit]The concept was introduced by mathematicians Philippe Delsarte and J.-M. Goethals in their published paper.[1][2]
A new proof of the properties of the Delsarte–Goethals code was published in 1970.[3]
Function
[edit]The Delsarte–Goethals code DG(m,r) for even m ≥ 4 and 0 ≤ r ≤ m/2 − 1 is a binary, non-linear code of length , size and minimum distance
The code sits between the Kerdock code and the second-order Reed–Muller codes. More precisely, we have
When r = 0, we have DG(m,r) = K(m) and when r = m/2 − 1 we have DG(m,r) = RM(2,m).
For r = m/2 − 1 the Delsarte–Goethals code has strength 7 and is therefore an orthogonal array OA(.[4][5]
References
[edit]- ^ "Delsarte-Goethals code - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2017-05-22.
- ^ Abhyankar, S. S.; et al. (2002). Hazewinkel, M. (ed.). Encyclopaedia of Mathematics, Supplement III. doi:10.1007/978-0-306-48373-8. ISBN 978-1-4020-0198-7.[page needed]
- ^ Leducq, Elodie (May 2012). "A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed–Muller codes". Finite Fields and Their Applications. 18 (3): 581–586. doi:10.1016/j.ffa.2011.12.003.
- ^ Schürer, Rudolf. "MinT - Delsarte–Goethals Codes". mint.sbg.ac.at. Retrieved 2017-05-22.
- ^ Abhyankar, S. S.; et al. (2002). Hazewinkel, M. (ed.). Encyclopaedia of Mathematics, Supplement III. doi:10.1007/978-0-306-48373-8. ISBN 978-1-4020-0198-7.[page needed]
 
	