Jump to content

Condon model

From Wikipedia, the free encyclopedia
Edward Condon c. late 1940s

In optics and materials science, Condon model is a mathematical formula for the frequency dependence of the chirality parameter of bi-isotropic or bi-anisotropic media. It was reported by Edward Condon, William Altar and Henry Eyring in 1937 in its definitive form,[1][2] with its earlier forms being introduced by Max Born, Heinrich Gerhard Kuhn and Léon Rosenfeld, among others.[3]

Mathematical formulation

[edit]

Electric and magnetic constitutive relations for a dispersive and reciprocal chiral material are written as:[4]

where and are the frequency-dependent permittivity and magnetic susceptibility. denotes the chirality parameter for magnetoelectric coupling. Using a quantum mechanical treatment of molecular transitions that facilitate chiral behavior, Condon et al. arrives at a single oscillator oscillator expression for the chirality parameter, known as "the one‐electron rotatory power":[1][2][4]

where

  • is the angular resonant frequency of the molecular transition.
  • is the damping term.
  • is the rotational strength of the molecular transition.

Alternatively, an expression with multiple oscillators can be used to denote multiple molecular transition between the states to :[5]

Under passivity constraints, imaginary parts of the complex Condon expression and the other constitutive paremeters obey the inequality:[4]

where is the speed of light in vacuum. The model is often approximated with a single-pole oscillator whose resonance lies far away from other molecular transitions. The presence of angular frequency () term in the numerator suggests the absence of chirality in the static limit.[4] Since the model is causal and thus obeys the Kramers–Kronig relations,[6] it is used in the time-domain analytical and numerical modeling of wave propagation in chiral media.[7][8][9][10]

Condon model parameters of chiral materials such as glucose solutions and metamaterials can be retrieved from experimental measurements of optical rotatory dispersion[6] and electromagnetic simulation data.[11]

See also

[edit]

References

[edit]
  1. ^ a b Condon, E. U.; Altar, William; Eyring, Henry (1937). "One‐Electron Rotatory Power". The Journal of Chemical Physics. 5 (4): 753–775. doi:10.1063/1.1749938.
  2. ^ a b Condon, E. U. (1937). "Theories of Optical Rotatory Power". Reviews of Modern Physics. 9 (4): 432–457. doi:10.1103/RevModPhys.9.432.
  3. ^ Kauzmann, Walter J.; Walter, John E.; Eyring, Henry (1940). "Theories of Optical Rotatory Power". Chemical Reviews. 26 (3): 339–407. doi:10.1021/cr60085a002.
  4. ^ a b c d Lindell, I. V.; Sihvola, A. H.; Tretyakov, S. A.; Viitanen, A. J. (1994). Electromagnetic Waves in Chiral and Bi-isotropic Media. Artech House. ISBN 9780890066843.
  5. ^ Sihvola, Ari (1992). "Temporal Dispersion in Chiral Composite Materials: A Theoretical Study". Journal of Electromagnetic Waves and Applications. 6 (9): 1177–1196. doi:10.1163/156939392X00670.
  6. ^ a b Mohammadi-Baghaee, Reza; Rashed-Mohassel, Jalil (2016). "The Chirality Parameter for Chiral Chemical Solutions". Journal of Solution Chemistry. 45: 1171–1181.
  7. ^ Zablocky, Paul G.; Engheta, Nader (1993). "Transients in chiral media with single-resonance dispersion". Journal of the Optical Society of America A. 10 (4): 740–758. doi:10.1364/JOSAA.10.000740.
  8. ^ Maksimenko, S. A.; Slepyan, G. Ya.; Lakhtakia, A. (1997). "Gaussian pulse propagation in a linear, lossy chiral medium". Journal of the Optical Society of America A. 14 (4): 894–900. doi:10.1364/JOSAA.14.000894.
  9. ^ Akyurtlu, A.; Werner, D. H. (2004). "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials". IEEE Transactions on Antennas and Propagation. 52 (9): 2267–2276. doi:10.1109/TAP.2004.834153.
  10. ^ Demir, V.; Elsherbeni, A. Z.; Arvas, E. (2005). "FDTD formulation for dispersive chiral media using the Z transform method". IEEE Transactions on Antennas and Propagation. 53 (10): 3374–3384. doi:10.1109/TAP.2005.856328.
  11. ^ Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M. (2010). "Chiral metamaterials: retrieval of the effective parameters with and without substrate". Optics Express. 18 (4): 14553–14567. arXiv:1008.5177. doi:10.1364/OE.18.014553.