Extension of superfactorials to the complex numbers
Plot of the Barnes G aka double gamma function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D The Barnes G function along part of the real axis In mathematics , the Barnes G-function  
  
    
      
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle G(z)} 
   
 function  that is an extension of superfactorials  to the complex numbers . It is related to the gamma function , the K-function  and the Glaisher–Kinkelin constant , and was named after mathematician  Ernest William Barnes .[ 1] double gamma function .
Formally, the Barnes G -function is defined in the following Weierstrass product  form:[ 2] 
  
    
      
        G 
        ( 
        1 
        + 
        z 
        ) 
        = 
        ( 
        2 
        π 
        
          ) 
          
            z 
            
              / 
             
            2 
           
         
        exp 
         
        
          ( 
          
            − 
            
              
                
                  z 
                  + 
                  
                    z 
                    
                      2 
                     
                   
                  ( 
                  1 
                  + 
                  γ 
                  ) 
                 
                2 
               
             
           
          ) 
         
        
          ∏ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          { 
          
            
              
                ( 
                
                  1 
                  + 
                  
                    
                      z 
                      k 
                     
                   
                 
                ) 
               
              
                k 
               
             
            exp 
             
            
              ( 
              
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    
                      2 
                      k 
                     
                   
                 
                − 
                z 
               
              ) 
             
           
          } 
         
       
     
    {\displaystyle G(1+z)=(2\pi )^{z/2}\exp \left(-{\frac {z+z^{2}(1+\gamma )}{2}}\right)\,\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}\exp \left({\frac {z^{2}}{2k}}-z\right)\right\}} 
   
 where 
  
    
      
        γ 
       
     
    {\displaystyle \,\gamma } 
   
 Euler–Mascheroni constant , exp (x ) = e x 
  
    
      
        Π 
       
     
    {\displaystyle \Pi } 
   
 capital pi notation ).
The integral representation, which may be deduced from the relation to the double gamma function , is 
  
    
      
        log 
         
        G 
        ( 
        1 
        + 
        z 
        ) 
        = 
        
          
            z 
            2 
           
         
        log 
         
        ( 
        2 
        π 
        ) 
        + 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              d 
              t 
             
            t 
           
         
        
          [ 
          
            
              
                
                  1 
                  − 
                  
                    e 
                    
                      − 
                      z 
                      t 
                     
                   
                 
                
                  4 
                  
                    sinh 
                    
                      2 
                     
                   
                   
                  
                    
                      t 
                      2 
                     
                   
                 
               
             
            + 
            
              
                
                  z 
                  
                    2 
                   
                 
                2 
               
             
            
              e 
              
                − 
                t 
               
             
            − 
            
              
                z 
                t 
               
             
           
          ] 
         
       
     
    {\displaystyle \log G(1+z)={\frac {z}{2}}\log(2\pi )+\int _{0}^{\infty }{\frac {dt}{t}}\left[{\frac {1-e^{-zt}}{4\sinh ^{2}{\frac {t}{2}}}}+{\frac {z^{2}}{2}}e^{-t}-{\frac {z}{t}}\right]} 
   
 As an entire function , 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
 
Functional equation and integer arguments [ edit ] The Barnes G -function satisfies the functional equation 
  
    
      
        G 
        ( 
        z 
        + 
        1 
        ) 
        = 
        Γ 
        ( 
        z 
        ) 
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle G(z+1)=\Gamma (z)\,G(z)} 
   
 with normalization 
  
    
      
        G 
        ( 
        1 
        ) 
        = 
        1 
       
     
    {\displaystyle G(1)=1} 
   
 gamma function :
  
    
      
        Γ 
        ( 
        z 
        + 
        1 
        ) 
        = 
        z 
        Γ 
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle \Gamma (z+1)=z\,\Gamma (z).} 
   
 The functional equation implies that 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
 integer  arguments:
  
    
      
        G 
        ( 
        n 
        ) 
        = 
        
          
            { 
            
              
                
                  0 
                 
                
                  
                    if  
                   
                  n 
                  = 
                  0 
                  , 
                  − 
                  1 
                  , 
                  − 
                  2 
                  , 
                  … 
                 
               
              
                
                  
                    ∏ 
                    
                      i 
                      = 
                      0 
                     
                    
                      n 
                      − 
                      2 
                     
                   
                  i 
                  ! 
                 
                
                  
                    if  
                   
                  n 
                  = 
                  1 
                  , 
                  2 
                  , 
                  … 
                 
               
             
             
         
       
     
    {\displaystyle G(n)={\begin{cases}0&{\text{if }}n=0,-1,-2,\dots \\\prod _{i=0}^{n-2}i!&{\text{if }}n=1,2,\dots \end{cases}}} 
   
 In particular, 
  
    
      
        G 
        ( 
        0 
        ) 
        = 
        0 
        , 
        G 
        ( 
        1 
        ) 
        = 
        1 
       
     
    {\displaystyle G(0)=0,G(1)=1} 
   
 
  
    
      
        G 
        ( 
        n 
        ) 
        = 
        s 
        f 
        ( 
        n 
        − 
        2 
        ) 
       
     
    {\displaystyle G(n)=sf(n-2)} 
   
 
  
    
      
        n 
        ≥ 
        1 
       
     
    {\displaystyle n\geq 1} 
   
 
  
    
      
        s 
        f 
       
     
    {\displaystyle sf} 
   
 superfactorial .
and thus
  
    
      
        G 
        ( 
        n 
        ) 
        = 
        
          
            
              ( 
              Γ 
              ( 
              n 
              ) 
              
                ) 
                
                  n 
                  − 
                  1 
                 
               
             
            
              K 
              ( 
              n 
              ) 
             
           
         
       
     
    {\displaystyle G(n)={\frac {(\Gamma (n))^{n-1}}{K(n)}}} 
   
 where 
  
    
      
        Γ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \,\Gamma (x)} 
   
 gamma function  and 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 K-function . In general,
  
    
      
        K 
        ( 
        z 
        ) 
        G 
        ( 
        z 
        ) 
        = 
        
          e 
          
            ( 
            z 
            − 
            1 
            ) 
            ln 
             
            Γ 
            ( 
            z 
            ) 
           
         
       
     
    {\displaystyle K(z)G(z)=e^{(z-1)\ln \Gamma (z)}} 
   
 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
The functional equation 
  
    
      
        G 
        ( 
        z 
        + 
        1 
        ) 
        = 
        Γ 
        ( 
        z 
        ) 
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle G(z+1)=\Gamma (z)\,G(z)} 
   
 
  
    
      
        ( 
        ∀ 
        x 
        ≥ 
        1 
        ) 
        
          
            
              
                d 
               
              
                3 
               
             
            
              
                d 
               
              
                x 
                
                  3 
                 
               
             
           
         
        log 
         
        ( 
        G 
        ( 
        x 
        ) 
        ) 
        ≥ 
        0 
       
     
    {\displaystyle (\forall x\geq 1)\,{\frac {\mathrm {d} ^{3}}{\mathrm {d} x^{3}}}\log(G(x))\geq 0} 
   
 is added.[ 3] [ 4] 
  
    
      
        G 
        ( 
        x 
        ) 
        G 
        
          
            ( 
            
              x 
              + 
              
                
                  1 
                  2 
                 
               
             
            ) 
           
          
            2 
           
         
        G 
        ( 
        x 
        + 
        1 
        ) 
        = 
        
          e 
          
            
              1 
              4 
             
           
         
        
          A 
          
            − 
            3 
           
         
        
          2 
          
            − 
            2 
            
              x 
              
                2 
               
             
            + 
            3 
            x 
            − 
            
              
                11 
                12 
               
             
           
         
        
          π 
          
            x 
            − 
            
              
                1 
                2 
               
             
           
         
        G 
        
          ( 
          
            2 
            x 
           
          ) 
         
       
     
    {\displaystyle G(x)G\left(x+{\frac {1}{2}}\right)^{2}G(x+1)=e^{\frac {1}{4}}A^{-3}2^{-2x^{2}+3x-{\frac {11}{12}}}\pi ^{x-{\frac {1}{2}}}G\left(2x\right)} 
   
 where 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 Glaisher–Kinkelin constant .
Similar to the Bohr–Mollerup theorem  for the gamma function , for a constant 
  
    
      
        c 
        > 
        0 
       
     
    {\displaystyle c>0} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        c 
        G 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)=cG(x)} 
   
 [ 5] 
  
    
      
        f 
        ( 
        x 
        + 
        1 
        ) 
        = 
        Γ 
        ( 
        x 
        ) 
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x+1)=\Gamma (x)f(x)} 
   
 
and for 
  
    
      
        x 
        > 
        0 
       
     
    {\displaystyle x>0} 
   
 
  
    
      
        f 
        ( 
        x 
        + 
        n 
        ) 
        ∼ 
        Γ 
        ( 
        x 
        
          ) 
          
            n 
           
         
        
          n 
          
            
              
                ( 
               
              
                x 
                2 
               
              
                ) 
               
             
           
         
        f 
        ( 
        n 
        ) 
       
     
    {\displaystyle f(x+n)\sim \Gamma (x)^{n}n^{x \choose 2}f(n)} 
   
 
as 
  
    
      
        n 
        → 
        ∞ 
       
     
    {\displaystyle n\to \infty } 
   
 
The difference equation  for the G-function, in conjunction with the functional equation  for the gamma function , can be used to obtain the following reflection formula  for the Barnes G-function (originally proved by Hermann Kinkelin ):
  
    
      
        log 
         
        G 
        ( 
        1 
        − 
        z 
        ) 
        = 
        log 
         
        G 
        ( 
        1 
        + 
        z 
        ) 
        − 
        z 
        log 
         
        2 
        π 
        + 
        
          ∫ 
          
            0 
           
          
            z 
           
         
        π 
        x 
        cot 
         
        π 
        x 
        d 
        x 
        . 
       
     
    {\displaystyle \log G(1-z)=\log G(1+z)-z\log 2\pi +\int _{0}^{z}\pi x\cot \pi x\,dx.} 
   
 The log-tangent integral on the right-hand side can be evaluated in terms of the Clausen function  (of order 2), as is shown below:[ 2] 
  
    
      
        2 
        π 
        log 
         
        
          ( 
          
            
              
                G 
                ( 
                1 
                − 
                z 
                ) 
               
              
                G 
                ( 
                1 
                + 
                z 
                ) 
               
             
           
          ) 
         
        = 
        2 
        π 
        z 
        log 
         
        
          ( 
          
            
              
                sin 
                 
                π 
                z 
               
              π 
             
           
          ) 
         
        + 
        
          Cl 
          
            2 
           
         
         
        ( 
        2 
        π 
        z 
        ) 
       
     
    {\displaystyle 2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+\operatorname {Cl} _{2}(2\pi z)} 
   
 The proof of this result hinges on the following evaluation of the cotangent integral: introducing the notation 
  
    
      
        Lc 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \operatorname {Lc} (z)} 
   
 
  
    
      
        ( 
        d 
        
          / 
         
        d 
        x 
        ) 
        log 
         
        ( 
        sin 
         
        π 
        x 
        ) 
        = 
        π 
        cot 
         
        π 
        x 
       
     
    {\displaystyle \,(d/dx)\log(\sin \pi x)=\pi \cot \pi x} 
   
 
  
    
      
        
          
            
              
                Lc 
                 
                ( 
                z 
                ) 
               
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                π 
                x 
                cot 
                 
                π 
                x 
                d 
                x 
               
             
            
              
                = 
                z 
                log 
                 
                ( 
                sin 
                 
                π 
                z 
                ) 
                − 
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                log 
                 
                ( 
                sin 
                 
                π 
                x 
                ) 
                d 
                x 
               
             
            
              
                = 
                z 
                log 
                 
                ( 
                sin 
                 
                π 
                z 
                ) 
                − 
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                
                  
                    [ 
                   
                 
                log 
                 
                ( 
                2 
                sin 
                 
                π 
                x 
                ) 
                − 
                log 
                 
                2 
                
                  
                    ] 
                   
                 
                d 
                x 
               
             
            
              
                = 
                z 
                log 
                 
                ( 
                2 
                sin 
                 
                π 
                z 
                ) 
                − 
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                log 
                 
                ( 
                2 
                sin 
                 
                π 
                x 
                ) 
                d 
                x 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {Lc} (z)&=\int _{0}^{z}\pi x\cot \pi x\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}\log(\sin \pi x)\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}{\Bigg [}\log(2\sin \pi x)-\log 2{\Bigg ]}\,dx\\&=z\log(2\sin \pi z)-\int _{0}^{z}\log(2\sin \pi x)\,dx.\end{aligned}}} 
   
 Performing the integral substitution 
  
    
      
        y 
        = 
        2 
        π 
        x 
        ⇒ 
        d 
        x 
        = 
        d 
        y 
        
          / 
         
        ( 
        2 
        π 
        ) 
       
     
    {\displaystyle \,y=2\pi x\Rightarrow dx=dy/(2\pi )} 
   
 
  
    
      
        z 
        log 
         
        ( 
        2 
        sin 
         
        π 
        z 
        ) 
        − 
        
          
            1 
            
              2 
              π 
             
           
         
        
          ∫ 
          
            0 
           
          
            2 
            π 
            z 
           
         
        log 
         
        
          ( 
          
            2 
            sin 
             
            
              
                y 
                2 
               
             
           
          ) 
         
        d 
        y 
        . 
       
     
    {\displaystyle z\log(2\sin \pi z)-{\frac {1}{2\pi }}\int _{0}^{2\pi z}\log \left(2\sin {\frac {y}{2}}\right)\,dy.} 
   
 The Clausen function  – of second order – has the integral representation
  
    
      
        
          Cl 
          
            2 
           
         
         
        ( 
        θ 
        ) 
        = 
        − 
        
          ∫ 
          
            0 
           
          
            θ 
           
         
        log 
         
        
          
            | 
           
         
        2 
        sin 
         
        
          
            x 
            2 
           
         
        
          
            | 
           
         
        d 
        x 
        . 
       
     
    {\displaystyle \operatorname {Cl} _{2}(\theta )=-\int _{0}^{\theta }\log {\Bigg |}2\sin {\frac {x}{2}}{\Bigg |}\,dx.} 
   
 However, within the interval 
  
    
      
        0 
        < 
        θ 
        < 
        2 
        π 
       
     
    {\displaystyle \,0<\theta <2\pi } 
   
 absolute value  sign within the integrand  can be omitted, since within the range the 'half-sine' function in the integral is strictly positive, and strictly non-zero. Comparing this definition with the result above for the logtangent integral, the following relation clearly holds:
  
    
      
        Lc 
         
        ( 
        z 
        ) 
        = 
        z 
        log 
         
        ( 
        2 
        sin 
         
        π 
        z 
        ) 
        + 
        
          
            1 
            
              2 
              π 
             
           
         
        
          Cl 
          
            2 
           
         
         
        ( 
        2 
        π 
        z 
        ) 
        . 
       
     
    {\displaystyle \operatorname {Lc} (z)=z\log(2\sin \pi z)+{\frac {1}{2\pi }}\operatorname {Cl} _{2}(2\pi z).} 
   
 Thus, after a slight rearrangement of terms, the proof is complete:
  
    
      
        2 
        π 
        log 
         
        
          ( 
          
            
              
                G 
                ( 
                1 
                − 
                z 
                ) 
               
              
                G 
                ( 
                1 
                + 
                z 
                ) 
               
             
           
          ) 
         
        = 
        2 
        π 
        z 
        log 
         
        
          ( 
          
            
              
                sin 
                 
                π 
                z 
               
              π 
             
           
          ) 
         
        + 
        
          Cl 
          
            2 
           
         
         
        ( 
        2 
        π 
        z 
        ) 
       
     
    {\displaystyle 2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+\operatorname {Cl} _{2}(2\pi z)} 
   
 Using the relation 
  
    
      
        G 
        ( 
        1 
        + 
        z 
        ) 
        = 
        Γ 
        ( 
        z 
        ) 
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle \,G(1+z)=\Gamma (z)\,G(z)} 
   
 
  
    
      
        2 
        π 
       
     
    {\displaystyle \,2\pi } 
   
 
  
    
      
        log 
         
        
          ( 
          
            
              
                G 
                ( 
                1 
                − 
                z 
                ) 
               
              
                G 
                ( 
                z 
                ) 
               
             
           
          ) 
         
        = 
        z 
        log 
         
        
          ( 
          
            
              
                sin 
                 
                π 
                z 
               
              π 
             
           
          ) 
         
        + 
        log 
         
        Γ 
        ( 
        z 
        ) 
        + 
        
          
            1 
            
              2 
              π 
             
           
         
        
          Cl 
          
            2 
           
         
         
        ( 
        2 
        π 
        z 
        ) 
       
     
    {\displaystyle \log \left({\frac {G(1-z)}{G(z)}}\right)=z\log \left({\frac {\sin \pi z}{\pi }}\right)+\log \Gamma (z)+{\frac {1}{2\pi }}\operatorname {Cl} _{2}(2\pi z)} 
   
 Adamchik (2003) has given an equivalent form of the reflection formula , but with a different proof.[ 6] 
Replacing 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
  
    
      
        1 
        
          / 
         
        2 
        − 
        z 
       
     
    {\displaystyle 1/2-z} 
   
 
(involving Bernoulli polynomials ):
  
    
      
        log 
         
        
          ( 
          
            
              
                G 
                
                  ( 
                  
                    
                      
                        1 
                        2 
                       
                     
                    + 
                    z 
                   
                  ) 
                 
               
              
                G 
                
                  ( 
                  
                    
                      
                        1 
                        2 
                       
                     
                    − 
                    z 
                   
                  ) 
                 
               
             
           
          ) 
         
        = 
        log 
         
        Γ 
        
          ( 
          
            
              
                1 
                2 
               
             
            − 
            z 
           
          ) 
         
        + 
        
          B 
          
            1 
           
         
        ( 
        z 
        ) 
        log 
         
        2 
        π 
        + 
        
          
            1 
            2 
           
         
        log 
         
        2 
        + 
        π 
        
          ∫ 
          
            0 
           
          
            z 
           
         
        
          B 
          
            1 
           
         
        ( 
        x 
        ) 
        tan 
         
        π 
        x 
        d 
        x 
       
     
    {\displaystyle \log \left({\frac {G\left({\frac {1}{2}}+z\right)}{G\left({\frac {1}{2}}-z\right)}}\right)=\log \Gamma \left({\frac {1}{2}}-z\right)+B_{1}(z)\log 2\pi +{\frac {1}{2}}\log 2+\pi \int _{0}^{z}B_{1}(x)\tan \pi x\,dx} 
   
 Taylor series expansion [ edit ] By Taylor's theorem , and considering the logarithmic derivatives  of the Barnes function, the following series expansion can be obtained:
  
    
      
        log 
         
        G 
        ( 
        1 
        + 
        z 
        ) 
        = 
        
          
            z 
            2 
           
         
        log 
         
        2 
        π 
        − 
        
          ( 
          
            
              
                z 
                + 
                ( 
                1 
                + 
                γ 
                ) 
                
                  z 
                  
                    2 
                   
                 
               
              2 
             
           
          ) 
         
        + 
        
          ∑ 
          
            k 
            = 
            2 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          
            
              ζ 
              ( 
              k 
              ) 
             
            
              k 
              + 
              1 
             
           
         
        
          z 
          
            k 
            + 
            1 
           
         
        . 
       
     
    {\displaystyle \log G(1+z)={\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}.} 
   
 It is valid for 
  
    
      
        0 
        < 
        z 
        < 
        1 
       
     
    {\displaystyle \,0<z<1} 
   
 
  
    
      
        ζ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \,\zeta (x)} 
   
 Riemann zeta function :
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              n 
              
                s 
               
             
           
         
        . 
       
     
    {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.} 
   
 Exponentiating both sides of the Taylor expansion gives:
  
    
      
        
          
            
              
                G 
                ( 
                1 
                + 
                z 
                ) 
               
              
                = 
                exp 
                 
                
                  [ 
                  
                    
                      
                        z 
                        2 
                       
                     
                    log 
                     
                    2 
                    π 
                    − 
                    
                      ( 
                      
                        
                          
                            z 
                            + 
                            ( 
                            1 
                            + 
                            γ 
                            ) 
                            
                              z 
                              
                                2 
                               
                             
                           
                          2 
                         
                       
                      ) 
                     
                    + 
                    
                      ∑ 
                      
                        k 
                        = 
                        2 
                       
                      
                        ∞ 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        k 
                       
                     
                    
                      
                        
                          ζ 
                          ( 
                          k 
                          ) 
                         
                        
                          k 
                          + 
                          1 
                         
                       
                     
                    
                      z 
                      
                        k 
                        + 
                        1 
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                ( 
                2 
                π 
                
                  ) 
                  
                    z 
                    
                      / 
                     
                    2 
                   
                 
                exp 
                 
                
                  [ 
                  
                    − 
                    
                      
                        
                          z 
                          + 
                          ( 
                          1 
                          + 
                          γ 
                          ) 
                          
                            z 
                            
                              2 
                             
                           
                         
                        2 
                       
                     
                   
                  ] 
                 
                exp 
                 
                
                  [ 
                  
                    
                      ∑ 
                      
                        k 
                        = 
                        2 
                       
                      
                        ∞ 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        k 
                       
                     
                    
                      
                        
                          ζ 
                          ( 
                          k 
                          ) 
                         
                        
                          k 
                          + 
                          1 
                         
                       
                     
                    
                      z 
                      
                        k 
                        + 
                        1 
                       
                     
                   
                  ] 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}G(1+z)&=\exp \left[{\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]\\&=(2\pi )^{z/2}\exp \left[-{\frac {z+(1+\gamma )z^{2}}{2}}\right]\exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right].\end{aligned}}} 
   
 Comparing this with the Weierstrass product  form of the Barnes function gives the following relation:
  
    
      
        exp 
         
        
          [ 
          
            
              ∑ 
              
                k 
                = 
                2 
               
              
                ∞ 
               
             
            ( 
            − 
            1 
            
              ) 
              
                k 
               
             
            
              
                
                  ζ 
                  ( 
                  k 
                  ) 
                 
                
                  k 
                  + 
                  1 
                 
               
             
            
              z 
              
                k 
                + 
                1 
               
             
           
          ] 
         
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          { 
          
            
              
                ( 
                
                  1 
                  + 
                  
                    
                      z 
                      k 
                     
                   
                 
                ) 
               
              
                k 
               
             
            exp 
             
            
              ( 
              
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    
                      2 
                      k 
                     
                   
                 
                − 
                z 
               
              ) 
             
           
          } 
         
       
     
    {\displaystyle \exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]=\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}\exp \left({\frac {z^{2}}{2k}}-z\right)\right\}} 
   
 Like the gamma function, the G-function also has a multiplication formula:[ 7] 
  
    
      
        G 
        ( 
        n 
        z 
        ) 
        = 
        K 
        ( 
        n 
        ) 
        
          n 
          
            
              n 
              
                2 
               
             
            
              z 
              
                2 
               
             
            
              / 
             
            2 
            − 
            n 
            z 
           
         
        ( 
        2 
        π 
        
          ) 
          
            − 
            
              
                
                  
                    n 
                    
                      2 
                     
                   
                  − 
                  n 
                 
                2 
               
             
            z 
           
         
        
          ∏ 
          
            i 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        
          ∏ 
          
            j 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        G 
        
          ( 
          
            z 
            + 
            
              
                
                  i 
                  + 
                  j 
                 
                n 
               
             
           
          ) 
         
       
     
    {\displaystyle G(nz)=K(n)n^{n^{2}z^{2}/2-nz}(2\pi )^{-{\frac {n^{2}-n}{2}}z}\prod _{i=0}^{n-1}\prod _{j=0}^{n-1}G\left(z+{\frac {i+j}{n}}\right)} 
   
 where 
  
    
      
        K 
        ( 
        n 
        ) 
       
     
    {\displaystyle K(n)} 
   
 
  
    
      
        K 
        ( 
        n 
        ) 
        = 
        
          e 
          
            − 
            ( 
            
              n 
              
                2 
               
             
            − 
            1 
            ) 
            
              ζ 
              
                ′ 
               
             
            ( 
            − 
            1 
            ) 
           
         
        ⋅ 
        
          n 
          
            
              5 
              12 
             
           
         
        ⋅ 
        ( 
        2 
        π 
        
          ) 
          
            ( 
            n 
            − 
            1 
            ) 
            
              / 
             
            2 
           
         
        = 
        ( 
        A 
        
          e 
          
            − 
            
              
                1 
                12 
               
             
           
         
        
          ) 
          
            
              n 
              
                2 
               
             
            − 
            1 
           
         
        ⋅ 
        
          n 
          
            
              5 
              12 
             
           
         
        ⋅ 
        ( 
        2 
        π 
        
          ) 
          
            ( 
            n 
            − 
            1 
            ) 
            
              / 
             
            2 
           
         
        . 
       
     
    {\displaystyle K(n)=e^{-(n^{2}-1)\zeta ^{\prime }(-1)}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}\,=\,(Ae^{-{\frac {1}{12}}})^{n^{2}-1}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}.} 
   
 Here 
  
    
      
        
          ζ 
          
            ′ 
           
         
       
     
    {\displaystyle \zeta ^{\prime }} 
   
 Riemann zeta function  and 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 Glaisher–Kinkelin constant .
It holds true that 
  
    
      
        G 
        ( 
        
          
            z 
            ¯ 
           
         
        ) 
        = 
        
          
            
              G 
              ( 
              z 
              ) 
             
            ¯ 
           
         
       
     
    {\displaystyle G({\overline {z}})={\overline {G(z)}}} 
   
 
  
    
      
        
          | 
         
        G 
        ( 
        z 
        ) 
        
          
            | 
           
          
            2 
           
         
        = 
        G 
        ( 
        z 
        ) 
        G 
        ( 
        
          
            z 
            ¯ 
           
         
        ) 
       
     
    {\displaystyle |G(z)|^{2}=G(z)G({\overline {z}})} 
   
 
  
    
      
        
          | 
         
        G 
        ( 
        x 
        + 
        i 
        y 
        ) 
        
          | 
         
        = 
        
          | 
         
        G 
        ( 
        x 
        ) 
        
          | 
         
        exp 
         
        
          ( 
          
            
              y 
              
                2 
               
             
            
              
                
                  1 
                  + 
                  γ 
                 
                2 
               
             
           
          ) 
         
        
          
            1 
            + 
            
              
                
                  y 
                  
                    2 
                   
                 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        
          
            
              ∏ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            
              
                ( 
                
                  1 
                  + 
                  
                    
                      
                        y 
                        
                          2 
                         
                       
                      
                        ( 
                        x 
                        + 
                        k 
                        
                          ) 
                          
                            2 
                           
                         
                       
                     
                   
                 
                ) 
               
              
                k 
                + 
                1 
               
             
            exp 
             
            
              ( 
              
                − 
                
                  
                    
                      y 
                      
                        2 
                       
                     
                    k 
                   
                 
               
              ) 
             
           
         
        . 
       
     
    {\displaystyle |G(x+iy)|=|G(x)|\exp \left(y^{2}{\frac {1+\gamma }{2}}\right){\sqrt {1+{\frac {y^{2}}{x^{2}}}}}{\sqrt {\prod _{k=1}^{\infty }\left(1+{\frac {y^{2}}{(x+k)^{2}}}\right)^{k+1}\exp \left(-{\frac {y^{2}}{k}}\right)}}.} 
   
 This relation is valid for arbitrary 
  
    
      
        x 
        ∈ 
        
          R 
         
        ∖ 
        { 
        0 
        , 
        − 
        1 
        , 
        − 
        2 
        , 
        … 
        } 
       
     
    {\displaystyle x\in \mathbb {R} \setminus \{0,-1,-2,\dots \}} 
   
 
  
    
      
        y 
        ∈ 
        
          R 
         
       
     
    {\displaystyle y\in \mathbb {R} } 
   
 
  
    
      
        x 
        = 
        0 
       
     
    {\displaystyle x=0} 
   
 
  
    
      
        
          | 
         
        G 
        ( 
        i 
        y 
        ) 
        
          | 
         
        = 
        y 
        exp 
         
        
          ( 
          
            
              y 
              
                2 
               
             
            
              
                
                  1 
                  + 
                  γ 
                 
                2 
               
             
           
          ) 
         
        
          
            
              ∏ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            
              
                ( 
                
                  1 
                  + 
                  
                    
                      
                        y 
                        
                          2 
                         
                       
                      
                        k 
                        
                          2 
                         
                       
                     
                   
                 
                ) 
               
              
                k 
                + 
                1 
               
             
            exp 
             
            
              ( 
              
                − 
                
                  
                    
                      y 
                      
                        2 
                       
                     
                    k 
                   
                 
               
              ) 
             
           
         
       
     
    {\displaystyle |G(iy)|=y\exp \left(y^{2}{\frac {1+\gamma }{2}}\right){\sqrt {\prod _{k=1}^{\infty }\left(1+{\frac {y^{2}}{k^{2}}}\right)^{k+1}\exp \left(-{\frac {y^{2}}{k}}\right)}}} 
   
 for arbitrary real y .
Asymptotic expansion [ edit ] The logarithm  of G (z  + 1) has the following asymptotic expansion, as established by Barnes:
  
    
      
        
          
            
              
                log 
                 
                G 
                ( 
                z 
                + 
                1 
                ) 
                = 
                
                 
               
              
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    2 
                   
                 
                log 
                 
                z 
                − 
                
                  
                    
                      3 
                      
                        z 
                        
                          2 
                         
                       
                     
                    4 
                   
                 
                + 
                
                  
                    z 
                    2 
                   
                 
                log 
                 
                2 
                π 
                − 
                
                  
                    1 
                    12 
                   
                 
                log 
                 
                z 
               
             
            
              
                
                 
                + 
                
                  ( 
                  
                    
                      
                        1 
                        12 
                       
                     
                    − 
                    log 
                     
                    A 
                   
                  ) 
                 
                + 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    N 
                   
                 
                
                  
                    
                      B 
                      
                        2 
                        k 
                        + 
                        2 
                       
                     
                    
                      4 
                      k 
                      
                        ( 
                        
                          k 
                          + 
                          1 
                         
                        ) 
                       
                      
                        z 
                        
                          2 
                          k 
                         
                       
                     
                   
                 
                  
                + 
                  
                O 
                
                  ( 
                  
                    
                      1 
                      
                        z 
                        
                          2 
                          N 
                          + 
                          2 
                         
                       
                     
                   
                  ) 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\log G(z+1)={}&{\frac {z^{2}}{2}}\log z-{\frac {3z^{2}}{4}}+{\frac {z}{2}}\log 2\pi -{\frac {1}{12}}\log z\\&{}+\left({\frac {1}{12}}-\log A\right)+\sum _{k=1}^{N}{\frac {B_{2k+2}}{4k\left(k+1\right)z^{2k}}}~+~O\left({\frac {1}{z^{2N+2}}}\right).\end{aligned}}} 
   
 Here the 
  
    
      
        
          B 
          
            k 
           
         
       
     
    {\displaystyle B_{k}} 
   
 Bernoulli numbers  and 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 Glaisher–Kinkelin constant . (Note that somewhat confusingly at the time of Barnes [ 8] Bernoulli number  
  
    
      
        
          B 
          
            2 
            k 
           
         
       
     
    {\displaystyle B_{2k}} 
   
 
  
    
      
        ( 
        − 
        1 
        
          ) 
          
            k 
            + 
            1 
           
         
        
          B 
          
            k 
           
         
       
     
    {\displaystyle (-1)^{k+1}B_{k}} 
   
 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
  
    
      
        
          | 
         
        z 
        
          | 
         
       
     
    {\displaystyle |z|} 
   
 
Relation to the log-gamma integral [ edit ] The parametric log-gamma can be evaluated in terms of the Barnes G-function:[ 9] 
  
    
      
        
          ∫ 
          
            0 
           
          
            z 
           
         
        log 
         
        Γ 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          
            
              z 
              ( 
              1 
              − 
              z 
              ) 
             
            2 
           
         
        + 
        
          
            z 
            2 
           
         
        log 
         
        2 
        π 
        + 
        ( 
        z 
        − 
        1 
        ) 
        log 
         
        Γ 
        ( 
        z 
        ) 
        − 
        log 
         
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +(z-1)\log \Gamma (z)-\log G(z)} 
   
 
A proof of the formula
 
The proof is somewhat indirect, and involves first considering the logarithmic difference of the gamma function  and Barnes G-function:
  
    
      
        z 
        log 
         
        Γ 
        ( 
        z 
        ) 
        − 
        log 
         
        G 
        ( 
        1 
        + 
        z 
        ) 
       
     
    {\displaystyle z\log \Gamma (z)-\log G(1+z)} 
   
 where
  
    
      
        
          
            1 
            
              Γ 
              ( 
              z 
              ) 
             
           
         
        = 
        z 
        
          e 
          
            γ 
            z 
           
         
        
          ∏ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          { 
          
            
              ( 
              
                1 
                + 
                
                  
                    z 
                    k 
                   
                 
               
              ) 
             
            
              e 
              
                − 
                z 
                
                  / 
                 
                k 
               
             
           
          } 
         
       
     
    {\displaystyle {\frac {1}{\Gamma (z)}}=ze^{\gamma z}\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)e^{-z/k}\right\}} 
   
 and 
  
    
      
        γ 
       
     
    {\displaystyle \,\gamma } 
   
 Euler–Mascheroni constant .
Taking the logarithm of the Weierstrass product  forms of the Barnes G-function and gamma function gives:
  
    
      
        
          
            
              
                z 
                log 
                 
                Γ 
                ( 
                z 
                ) 
                − 
                log 
                 
                G 
                ( 
                1 
                + 
                z 
                ) 
                = 
                − 
                z 
                log 
                 
                
                  ( 
                  
                    
                      1 
                      
                        Γ 
                        ( 
                        z 
                        ) 
                       
                     
                   
                  ) 
                 
                − 
                log 
                 
                G 
                ( 
                1 
                + 
                z 
                ) 
               
             
            
              
                = 
                
                 
               
              
                
                  − 
                  z 
                 
                
                  [ 
                  
                    log 
                     
                    z 
                    + 
                    γ 
                    z 
                    + 
                    
                      ∑ 
                      
                        k 
                        = 
                        1 
                       
                      
                        ∞ 
                       
                     
                    
                      
                        { 
                       
                     
                    log 
                     
                    
                      ( 
                      
                        1 
                        + 
                        
                          
                            z 
                            k 
                           
                         
                       
                      ) 
                     
                    − 
                    
                      
                        z 
                        k 
                       
                     
                    
                      
                        } 
                       
                     
                   
                  ] 
                 
               
             
            
              
                
                 
                − 
                
                  [ 
                  
                    
                      
                        z 
                        2 
                       
                     
                    log 
                     
                    2 
                    π 
                    − 
                    
                      
                        z 
                        2 
                       
                     
                    − 
                    
                      
                        
                          z 
                          
                            2 
                           
                         
                        2 
                       
                     
                    − 
                    
                      
                        
                          
                            z 
                            
                              2 
                             
                           
                          γ 
                         
                        2 
                       
                     
                    + 
                    
                      ∑ 
                      
                        k 
                        = 
                        1 
                       
                      
                        ∞ 
                       
                     
                    
                      
                        { 
                       
                     
                    k 
                    log 
                     
                    
                      ( 
                      
                        1 
                        + 
                        
                          
                            z 
                            k 
                           
                         
                       
                      ) 
                     
                    + 
                    
                      
                        
                          z 
                          
                            2 
                           
                         
                        
                          2 
                          k 
                         
                       
                     
                    − 
                    z 
                    
                      
                        } 
                       
                     
                   
                  ] 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&z\log \Gamma (z)-\log G(1+z)=-z\log \left({\frac {1}{\Gamma (z)}}\right)-\log G(1+z)\\[5pt]={}&{-z}\left[\log z+\gamma z+\sum _{k=1}^{\infty }{\Bigg \{}\log \left(1+{\frac {z}{k}}\right)-{\frac {z}{k}}{\Bigg \}}\right]\\[5pt]&{}-\left[{\frac {z}{2}}\log 2\pi -{\frac {z}{2}}-{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}+\sum _{k=1}^{\infty }{\Bigg \{}k\log \left(1+{\frac {z}{k}}\right)+{\frac {z^{2}}{2k}}-z{\Bigg \}}\right]\end{aligned}}} 
   
 A little simplification and re-ordering of terms gives the series expansion:
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    { 
                   
                 
                ( 
                k 
                + 
                z 
                ) 
                log 
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        z 
                        k 
                       
                     
                   
                  ) 
                 
                − 
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    
                      2 
                      k 
                     
                   
                 
                − 
                z 
                
                  
                    } 
                   
                 
               
             
            
              
                = 
                
                 
               
              
                
                  − 
                  z 
                 
                log 
                 
                z 
                − 
                
                  
                    z 
                    2 
                   
                 
                log 
                 
                2 
                π 
                + 
                
                  
                    z 
                    2 
                   
                 
                + 
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    2 
                   
                 
                − 
                
                  
                    
                      
                        z 
                        
                          2 
                         
                       
                      γ 
                     
                    2 
                   
                 
                − 
                z 
                log 
                 
                Γ 
                ( 
                z 
                ) 
                + 
                log 
                 
                G 
                ( 
                1 
                + 
                z 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}\\[5pt]={}&{-z}\log z-{\frac {z}{2}}\log 2\pi +{\frac {z}{2}}+{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}-z\log \Gamma (z)+\log G(1+z)\end{aligned}}} 
   
 Finally, take the logarithm of the Weierstrass product  form of the gamma function , and integrate over the interval 
  
    
      
        [ 
        0 
        , 
        z 
        ] 
       
     
    {\displaystyle \,[0,\,z]} 
   
 
  
    
      
        
          
            
              
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                log 
                 
                Γ 
                ( 
                x 
                ) 
                d 
                x 
                = 
                − 
                
                  ∫ 
                  
                    0 
                   
                  
                    z 
                   
                 
                log 
                 
                
                  ( 
                  
                    
                      1 
                      
                        Γ 
                        ( 
                        x 
                        ) 
                       
                     
                   
                  ) 
                 
                d 
                x 
               
             
            
              
                = 
                
                 
               
              
                
                  − 
                  ( 
                  z 
                  log 
                   
                  z 
                  − 
                  z 
                  ) 
                 
                − 
                
                  
                    
                      
                        z 
                        
                          2 
                         
                       
                      γ 
                     
                    2 
                   
                 
                − 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    { 
                   
                 
                ( 
                k 
                + 
                z 
                ) 
                log 
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        z 
                        k 
                       
                     
                   
                  ) 
                 
                − 
                
                  
                    
                      z 
                      
                        2 
                       
                     
                    
                      2 
                      k 
                     
                   
                 
                − 
                z 
                
                  
                    } 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\int _{0}^{z}\log \Gamma (x)\,dx=-\int _{0}^{z}\log \left({\frac {1}{\Gamma (x)}}\right)\,dx\\[5pt]={}&{-(z\log z-z)}-{\frac {z^{2}\gamma }{2}}-\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}\end{aligned}}} 
   
 Equating the two evaluations completes the proof:
  
    
      
        
          ∫ 
          
            0 
           
          
            z 
           
         
        log 
         
        Γ 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          
            
              z 
              ( 
              1 
              − 
              z 
              ) 
             
            2 
           
         
        + 
        
          
            z 
            2 
           
         
        log 
         
        2 
        π 
        + 
        z 
        log 
         
        Γ 
        ( 
        z 
        ) 
        − 
        log 
         
        G 
        ( 
        1 
        + 
        z 
        ) 
       
     
    {\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +z\log \Gamma (z)-\log G(1+z)} 
   
 And since 
  
    
      
        G 
        ( 
        1 
        + 
        z 
        ) 
        = 
        Γ 
        ( 
        z 
        ) 
        G 
        ( 
        z 
        ) 
       
     
    {\displaystyle \,G(1+z)=\Gamma (z)\,G(z)} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            z 
           
         
        log 
         
        Γ 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          
            
              z 
              ( 
              1 
              − 
              z 
              ) 
             
            2 
           
         
        + 
        
          
            z 
            2 
           
         
        log 
         
        2 
        π 
        − 
        ( 
        1 
        − 
        z 
        ) 
        log 
         
        Γ 
        ( 
        z 
        ) 
        − 
        log 
         
        G 
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi -(1-z)\log \Gamma (z)-\log G(z)\,.} 
   
   
 
Taking the logarithm of both sides introduces the analog of the Digamma function  
  
    
      
        ψ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \psi (x)} 
   
 
  
    
      
        φ 
        ( 
        x 
        ) 
        ≡ 
        
          
            d 
            
              d 
              x 
             
           
         
        log 
         
        G 
        ( 
        x 
        ) 
        , 
       
     
    {\displaystyle \varphi (x)\equiv {\frac {d}{dx}}\log G(x),} 
   
 
where [ 2] [ 1] [ 10] 
  
    
      
        φ 
        ( 
        x 
        ) 
        = 
        ( 
        x 
        − 
        1 
        ) 
        [ 
        ψ 
        ( 
        x 
        ) 
        − 
        1 
        ] 
        + 
        φ 
        ( 
        1 
        ) 
        , 
        φ 
        ( 
        1 
        ) 
        = 
        
          
            
              ln 
               
              ( 
              2 
              π 
              ) 
              − 
              1 
             
            2 
           
         
       
     
    {\displaystyle \varphi (x)=(x-1)[\psi (x)-1]+\varphi (1),\quad \varphi (1)={\frac {\ln(2\pi )-1}{2}}} 
   
 with Taylor series
  
    
      
        φ 
        ( 
        x 
        ) 
        = 
        φ 
        ( 
        1 
        ) 
        − 
        ( 
        γ 
        + 
        1 
        ) 
        ( 
        x 
        − 
        1 
        ) 
        + 
        
          ∑ 
          
            k 
            ≥ 
            2 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        ζ 
        ( 
        k 
        ) 
        ( 
        x 
        − 
        1 
        
          ) 
          
            k 
           
         
        . 
       
     
    {\displaystyle \varphi (x)=\varphi (1)-(\gamma +1)(x-1)+\sum _{k\geq 2}(-1)^{k}\zeta (k)(x-1)^{k}.} 
   
 
^ a b   Barnes, E. W. (1900). "The theory of the G-function" . Q. J. Pure Appl. Math . 31 : 264– 314. ^ a b c   Choi, Juensang; Srivastava, H. M. (1999). "Certain classes of series involving the Zeta Function". J. Math. Anal. Appl . 231 : 91– 117. doi :10.1006/jmaa.1998.6216 . ^ Vignéras, M. F. (1979). "L'équation fonctionelle de la fonction zêta de Selberg du groupe modulaire PSL
  
    
      
        ( 
        2 
        , 
        
          Z 
         
        ) 
       
     
    {\displaystyle (2,\mathbb {Z} )} 
   
  . Astérisque . 61 : 235– 249. ^ Park, Junesang (1996). "A duplication formula for the double gamma function $Gamma_2$" . Bulletin of the Korean Mathematical Society . 33  (2): 289– 294. ^ Marichal, Jean Luc; Zenaidi, Naim (2022). A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions (PDF) . Developments in Mathematics. Vol. 70. Springer. p. 218. doi :10.1007/978-3-030-95088-0 . ISBN  978-3-030-95087-3  ^ Adamchik, Viktor S. (2003). "Contributions to the Theory of the Barnes function". arXiv :math/0308086  ^ Vardi, I. (1988). "Determinants of Laplacians and multiple gamma functions". SIAM J. Math. Anal . 19  (2): 493– 507. doi :10.1137/0519035 . ^ E. T. Whittaker  and G. N. Watson , "A Course of Modern Analysis ", CUP.^ Neretin, Yury A. (2024). "The double gamma function and Vladimar Alekseevsky". arXiv :2402.07740 math.HO ]. ^ Merkle, Milan; Ribero Merkle, Monica Moulin (2011). "Krull's theory for the double gamma functions". Appl. Math. Comput . 218  (3): 935– 943. doi :10.1016/j.amc.2011.01.090 . MR  2831334 .  Askey, R.A.; Roy, R. (2010), "Barnes G-function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions ISBN  978-0-521-19225-5 MR  2723248