Theory of sound waves
Acoustic theory  is a scientific field that relates to the description of sound waves . It derives from fluid dynamics . See acoustics  for the engineering  approach.
For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                ∇ 
                ⋅ 
                ( 
                
                  ρ 
                  ′ 
                 
                
                  v 
                 
                ) 
               
              
                = 
                0 
                
                  (Conservation of Mass) 
                 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
                
                  (Equation of Motion) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\nabla \cdot (\rho '\mathbf {v} )&=0\qquad {\text{(Conservation of Mass)}}\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p'&=0\qquad {\text{(Equation of Motion)}}\end{aligned}}} 
   
 In the case that the fluctuations in velocity, density, and pressure are small, we can approximate these as
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} &=0\\{\frac {\partial \mathbf {v} }{\partial t}}+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 Where 
  
    
      
        
          v 
         
        ( 
        
          x 
         
        , 
        t 
        ) 
       
     
    {\displaystyle \mathbf {v} (\mathbf {x} ,t)} 
   
 
  
    
      
        
          p 
          
            0 
           
         
       
     
    {\displaystyle p_{0}} 
   
 
  
    
      
        
          p 
          ′ 
         
        ( 
        
          x 
         
        , 
        t 
        ) 
       
     
    {\displaystyle p'(\mathbf {x} ,t)} 
   
 
  
    
      
        
          ρ 
          
            0 
           
         
       
     
    {\displaystyle \rho _{0}} 
   
 
  
    
      
        
          ρ 
          ′ 
         
        ( 
        
          x 
         
        , 
        t 
        ) 
       
     
    {\displaystyle \rho '(\mathbf {x} ,t)} 
   
 
In the case that the velocity is irrotational  (
  
    
      
        ∇ 
        × 
        
          v 
         
        = 
        0 
       
     
    {\displaystyle \nabla \times \mathbf {v} =0} 
   
 
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              ϕ 
             
            
              ∂ 
              
                t 
                
                  2 
                 
               
             
           
         
        − 
        
          ∇ 
          
            2 
           
         
        ϕ 
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\phi }{\partial t^{2}}}-\nabla ^{2}\phi =0} 
   
 Where we have
  
    
      
        
          
            
              
                
                  v 
                 
               
              
                = 
                − 
                ∇ 
                ϕ 
               
             
            
              
                
                  c 
                  
                    2 
                   
                 
               
              
                = 
                ( 
                
                  
                    
                      ∂ 
                      p 
                     
                    
                      ∂ 
                      ρ 
                     
                   
                 
                
                  ) 
                  
                    s 
                   
                 
               
             
            
              
                
                  p 
                  ′ 
                 
               
              
                = 
                
                  ρ 
                  
                    0 
                   
                 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
               
             
            
              
                
                  ρ 
                  ′ 
                 
               
              
                = 
                
                  
                    
                      ρ 
                      
                        0 
                       
                     
                    
                      c 
                      
                        2 
                       
                     
                   
                 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {v} &=-\nabla \phi \\c^{2}&=({\frac {\partial p}{\partial \rho }})_{s}\\p'&=\rho _{0}{\frac {\partial \phi }{\partial t}}\\\rho '&={\frac {\rho _{0}}{c^{2}}}{\frac {\partial \phi }{\partial t}}\end{aligned}}} 
   
 
Derivation for a medium at rest [ edit ] Starting with the Continuity Equation and the Euler Equation:
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      ρ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ∇ 
                ⋅ 
                ρ 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ρ 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ρ 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                p 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho }{\partial t}}+\nabla \cdot \rho \mathbf {v} &=0\\\rho {\frac {\partial \mathbf {v} }{\partial t}}+\rho (\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p&=0\end{aligned}}} 
   
 If we  take small perturbations of a constant pressure and density:
  
    
      
        
          
            
              
                ρ 
               
              
                = 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
               
             
            
              
                p 
               
              
                = 
                
                  p 
                  
                    0 
                   
                 
                + 
                
                  p 
                  ′ 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\rho &=\rho _{0}+\rho '\\p&=p_{0}+p'\end{aligned}}} 
   
 Then the equations of the system are
  
    
      
        
          
            
              
                
                  
                    ∂ 
                    
                      ∂ 
                      t 
                     
                   
                 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                + 
                ∇ 
                ⋅ 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                ( 
                
                  p 
                  
                    0 
                   
                 
                + 
                
                  p 
                  ′ 
                 
                ) 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial }{\partial t}}(\rho _{0}+\rho ')+\nabla \cdot (\rho _{0}+\rho ')\mathbf {v} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla (p_{0}+p')&=0\end{aligned}}} 
   
 Noting that the equilibrium pressures and densities are constant, this simplifies to
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                ∇ 
                ⋅ 
                
                  ρ 
                  ′ 
                 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\nabla \cdot \rho '\mathbf {v} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p'&=0\end{aligned}}} 
   
 Starting with
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  w 
                 
                + 
                ∇ 
                ⋅ 
                
                  ρ 
                  ′ 
                 
                
                  w 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        w 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  w 
                 
                ⋅ 
                ∇ 
                ) 
                
                  w 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {w} +\nabla \cdot \rho '\mathbf {w} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {w} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {w} \cdot \nabla )\mathbf {w} +\nabla p'&=0\end{aligned}}} 
   
 We can have these equations work for a moving medium by setting 
  
    
      
        
          w 
         
        = 
        
          u 
         
        + 
        
          v 
         
       
     
    {\displaystyle \mathbf {w} =\mathbf {u} +\mathbf {v} } 
   
 
  
    
      
        
          u 
         
       
     
    {\displaystyle \mathbf {u} } 
   
 
  
    
      
        
          v 
         
       
     
    {\displaystyle \mathbf {v} } 
   
 
In this case the equations look very similar:
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                
                  u 
                 
                ⋅ 
                ∇ 
                
                  ρ 
                  ′ 
                 
                + 
                ∇ 
                ⋅ 
                
                  ρ 
                  ′ 
                 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  u 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\mathbf {u} \cdot \nabla \rho '+\nabla \cdot \rho '\mathbf {v} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {u} \cdot \nabla )\mathbf {v} +(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p'&=0\end{aligned}}} 
   
 Note that setting 
  
    
      
        
          u 
         
        = 
        0 
       
     
    {\displaystyle \mathbf {u} =0} 
   
 
Starting with the above given equations of motion for a medium at rest:
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                ∇ 
                ⋅ 
                
                  ρ 
                  ′ 
                 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\nabla \cdot \rho '\mathbf {v} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p'&=0\end{aligned}}} 
   
 Let us now take 
  
    
      
        
          v 
         
        , 
        
          ρ 
          ′ 
         
        , 
        
          p 
          ′ 
         
       
     
    {\displaystyle \mathbf {v} ,\rho ',p'} 
   
 
In the case that we keep terms to first order, for the continuity equation, we have the 
  
    
      
        
          ρ 
          ′ 
         
        
          v 
         
       
     
    {\displaystyle \rho '\mathbf {v} } 
   
 time derivative  of the velocity. Moreover, the spatial components of the material derivative  go to 0. We thus have, upon rearranging the equilibrium density:
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} &=0\\{\frac {\partial \mathbf {v} }{\partial t}}+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 Next, given that our sound wave occurs in an ideal fluid , the motion is adiabatic, and then we can relate the small change in the pressure to the small change in the density by
  
    
      
        
          p 
          ′ 
         
        = 
        
          
            ( 
            
              
                
                  ∂ 
                  p 
                 
                
                  ∂ 
                  
                    ρ 
                    
                      0 
                     
                   
                 
               
             
            ) 
           
          
            s 
           
         
        
          ρ 
          ′ 
         
       
     
    {\displaystyle p'=\left({\frac {\partial p}{\partial \rho _{0}}}\right)_{s}\rho '} 
   
 Under this condition, we see that we now have
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        p 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                
                  
                    ( 
                    
                      
                        
                          ∂ 
                          p 
                         
                        
                          ∂ 
                          
                            ρ 
                            
                              0 
                             
                           
                         
                       
                     
                    ) 
                   
                  
                    s 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial p'}{\partial t}}+\rho _{0}\left({\frac {\partial p}{\partial \rho _{0}}}\right)_{s}\nabla \cdot \mathbf {v} &=0\\{\frac {\partial \mathbf {v} }{\partial t}}+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 Defining the speed of sound of the system:
  
    
      
        c 
        ≡ 
        
          
            
              
                ( 
                
                  
                    
                      ∂ 
                      p 
                     
                    
                      ∂ 
                      
                        ρ 
                        
                          0 
                         
                       
                     
                   
                 
                ) 
               
              
                s 
               
             
           
         
       
     
    {\displaystyle c\equiv {\sqrt {\left({\frac {\partial p}{\partial \rho _{0}}}\right)_{s}}}} 
   
 Everything becomes
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        p 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                
                  c 
                  
                    2 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial p'}{\partial t}}+\rho _{0}c^{2}\nabla \cdot \mathbf {v} &=0\\{\frac {\partial \mathbf {v} }{\partial t}}+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 For Irrotational Fluids [ edit ] In the case that the fluid is irrotational, that is 
  
    
      
        ∇ 
        × 
        
          v 
         
        = 
        0 
       
     
    {\displaystyle \nabla \times \mathbf {v} =0} 
   
 
  
    
      
        
          v 
         
        = 
        − 
        ∇ 
        ϕ 
       
     
    {\displaystyle \mathbf {v} =-\nabla \phi } 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        p 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                − 
                
                  ρ 
                  
                    0 
                   
                 
                
                  c 
                  
                    2 
                   
                 
                
                  ∇ 
                  
                    2 
                   
                 
                ϕ 
               
              
                = 
                0 
               
             
            
              
                − 
                ∇ 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial p'}{\partial t}}-\rho _{0}c^{2}\nabla ^{2}\phi &=0\\-\nabla {\frac {\partial \phi }{\partial t}}+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 The second equation tells us that
  
    
      
        
          p 
          ′ 
         
        = 
        
          ρ 
          
            0 
           
         
        
          
            
              ∂ 
              ϕ 
             
            
              ∂ 
              t 
             
           
         
       
     
    {\displaystyle p'=\rho _{0}{\frac {\partial \phi }{\partial t}}} 
   
 And the use of this equation in the continuity equation tells us that
  
    
      
        
          ρ 
          
            0 
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              ϕ 
             
            
              ∂ 
              t 
             
           
         
        − 
        
          ρ 
          
            0 
           
         
        
          c 
          
            2 
           
         
        
          ∇ 
          
            2 
           
         
        ϕ 
        = 
        0 
       
     
    {\displaystyle \rho _{0}{\frac {\partial ^{2}\phi }{\partial t}}-\rho _{0}c^{2}\nabla ^{2}\phi =0} 
   
 This simplifies to
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              ϕ 
             
            
              ∂ 
              
                t 
                
                  2 
                 
               
             
           
         
        − 
        
          ∇ 
          
            2 
           
         
        ϕ 
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\phi }{\partial t^{2}}}-\nabla ^{2}\phi =0} 
   
 Thus the velocity potential 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 
Taking the time derivative of this wave equation and multiplying all sides by the unperturbed density, and then using the fact that 
  
    
      
        
          p 
          ′ 
         
        = 
        
          ρ 
          
            0 
           
         
        
          
            
              ∂ 
              ϕ 
             
            
              ∂ 
              t 
             
           
         
       
     
    {\displaystyle p'=\rho _{0}{\frac {\partial \phi }{\partial t}}} 
   
 
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              
                p 
                ′ 
               
             
            
              ∂ 
              
                t 
                
                  2 
                 
               
             
           
         
        − 
        
          ∇ 
          
            2 
           
         
        
          p 
          ′ 
         
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}p'}{\partial t^{2}}}-\nabla ^{2}p'=0} 
   
 Similarly, we saw that 
  
    
      
        
          p 
          ′ 
         
        = 
        
          
            ( 
            
              
                
                  ∂ 
                  p 
                 
                
                  ∂ 
                  
                    ρ 
                    
                      0 
                     
                   
                 
               
             
            ) 
           
          
            s 
           
         
        
          ρ 
          ′ 
         
        = 
        
          c 
          
            2 
           
         
        
          ρ 
          ′ 
         
       
     
    {\displaystyle p'=\left({\frac {\partial p}{\partial \rho _{0}}}\right)_{s}\rho '=c^{2}\rho '} 
   
 
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              
                ρ 
                ′ 
               
             
            
              ∂ 
              
                t 
                
                  2 
                 
               
             
           
         
        − 
        
          ∇ 
          
            2 
           
         
        
          ρ 
          ′ 
         
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\rho '}{\partial t^{2}}}-\nabla ^{2}\rho '=0} 
   
 Thus, the velocity potential , pressure, and density all obey the wave equation. Moreover, we only need to solve one such equation to determine all other three. In particular, we have
  
    
      
        
          
            
              
                
                  v 
                 
               
              
                = 
                − 
                ∇ 
                ϕ 
               
             
            
              
                
                  p 
                  ′ 
                 
               
              
                = 
                
                  ρ 
                  
                    0 
                   
                 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
               
             
            
              
                
                  ρ 
                  ′ 
                 
               
              
                = 
                
                  
                    
                      ρ 
                      
                        0 
                       
                     
                    
                      c 
                      
                        2 
                       
                     
                   
                 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      t 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {v} &=-\nabla \phi \\p'&=\rho _{0}{\frac {\partial \phi }{\partial t}}\\\rho '&={\frac {\rho _{0}}{c^{2}}}{\frac {\partial \phi }{\partial t}}\end{aligned}}} 
   
 For a moving medium [ edit ] Again, we can derive the small-disturbance limit for sound waves in a moving medium. Again, starting with
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                
                  u 
                 
                ⋅ 
                ∇ 
                
                  ρ 
                  ′ 
                 
                + 
                ∇ 
                ⋅ 
                
                  ρ 
                  ′ 
                 
                
                  v 
                 
               
              
                = 
                0 
               
             
            
              
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  u 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ( 
                
                  ρ 
                  
                    0 
                   
                 
                + 
                
                  ρ 
                  ′ 
                 
                ) 
                ( 
                
                  v 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\mathbf {u} \cdot \nabla \rho '+\nabla \cdot \rho '\mathbf {v} &=0\\(\rho _{0}+\rho '){\frac {\partial \mathbf {v} }{\partial t}}+(\rho _{0}+\rho ')(\mathbf {u} \cdot \nabla )\mathbf {v} +(\rho _{0}+\rho ')(\mathbf {v} \cdot \nabla )\mathbf {v} +\nabla p'&=0\end{aligned}}} 
   
 We can linearize these into
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                
                  u 
                 
                ⋅ 
                ∇ 
                
                  ρ 
                  ′ 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  u 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\mathbf {u} \cdot \nabla \rho '&=0\\{\frac {\partial \mathbf {v} }{\partial t}}+(\mathbf {u} \cdot \nabla )\mathbf {v} +{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 For Irrotational Fluids in a Moving Medium [ edit ] Given that we saw that
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        ρ 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                
                  ρ 
                  
                    0 
                   
                 
                ∇ 
                ⋅ 
                
                  v 
                 
                + 
                
                  u 
                 
                ⋅ 
                ∇ 
                
                  ρ 
                  ′ 
                 
               
              
                = 
                0 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        v 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                + 
                ( 
                
                  u 
                 
                ⋅ 
                ∇ 
                ) 
                
                  v 
                 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial \rho '}{\partial t}}+\rho _{0}\nabla \cdot \mathbf {v} +\mathbf {u} \cdot \nabla \rho '&=0\\{\frac {\partial \mathbf {v} }{\partial t}}+(\mathbf {u} \cdot \nabla )\mathbf {v} +{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 If we make the previous assumptions of the fluid being ideal and the velocity being irrotational, then we have
  
    
      
        
          
            
              
                
                  p 
                  ′ 
                 
               
              
                = 
                
                  
                    ( 
                    
                      
                        
                          ∂ 
                          p 
                         
                        
                          ∂ 
                          
                            ρ 
                            
                              0 
                             
                           
                         
                       
                     
                    ) 
                   
                  
                    s 
                   
                 
                
                  ρ 
                  ′ 
                 
                = 
                
                  c 
                  
                    2 
                   
                 
                
                  ρ 
                  ′ 
                 
               
             
            
              
                
                  v 
                 
               
              
                = 
                − 
                ∇ 
                ϕ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}p'&=\left({\frac {\partial p}{\partial \rho _{0}}}\right)_{s}\rho '=c^{2}\rho '\\\mathbf {v} &=-\nabla \phi \end{aligned}}} 
   
 Under these assumptions, our linearized sound equations become
  
    
      
        
          
            
              
                
                  
                    1 
                    
                      c 
                      
                        2 
                       
                     
                   
                 
                
                  
                    
                      ∂ 
                      
                        p 
                        ′ 
                       
                     
                    
                      ∂ 
                      t 
                     
                   
                 
                − 
                
                  ρ 
                  
                    0 
                   
                 
                
                  ∇ 
                  
                    2 
                   
                 
                ϕ 
                + 
                
                  
                    1 
                    
                      c 
                      
                        2 
                       
                     
                   
                 
                
                  u 
                 
                ⋅ 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
            
              
                − 
                
                  
                    ∂ 
                    
                      ∂ 
                      t 
                     
                   
                 
                ( 
                ∇ 
                ϕ 
                ) 
                − 
                ( 
                
                  u 
                 
                ⋅ 
                ∇ 
                ) 
                [ 
                ∇ 
                ϕ 
                ] 
                + 
                
                  
                    1 
                    
                      ρ 
                      
                        0 
                       
                     
                   
                 
                ∇ 
                
                  p 
                  ′ 
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {1}{c^{2}}}{\frac {\partial p'}{\partial t}}-\rho _{0}\nabla ^{2}\phi +{\frac {1}{c^{2}}}\mathbf {u} \cdot \nabla p'&=0\\-{\frac {\partial }{\partial t}}(\nabla \phi )-(\mathbf {u} \cdot \nabla )[\nabla \phi ]+{\frac {1}{\rho _{0}}}\nabla p'&=0\end{aligned}}} 
   
 Importantly, since 
  
    
      
        
          u 
         
       
     
    {\displaystyle \mathbf {u} } 
   
 
  
    
      
        ( 
        
          u 
         
        ⋅ 
        ∇ 
        ) 
        [ 
        ∇ 
        ϕ 
        ] 
        = 
        ∇ 
        [ 
        ( 
        
          u 
         
        ⋅ 
        ∇ 
        ) 
        ϕ 
        ] 
       
     
    {\displaystyle (\mathbf {u} \cdot \nabla )[\nabla \phi ]=\nabla [(\mathbf {u} \cdot \nabla )\phi ]} 
   
 
  
    
      
        
          
            1 
            
              ρ 
              
                0 
               
             
           
         
        ∇ 
        
          p 
          ′ 
         
        = 
        ∇ 
        
          [ 
          
            
              
                
                  ∂ 
                  ϕ 
                 
                
                  ∂ 
                  t 
                 
               
             
            + 
            ( 
            
              u 
             
            ⋅ 
            ∇ 
            ) 
            ϕ 
           
          ] 
         
       
     
    {\displaystyle {\frac {1}{\rho _{0}}}\nabla p'=\nabla \left[{\frac {\partial \phi }{\partial t}}+(\mathbf {u} \cdot \nabla )\phi \right]} 
   
 Or just that
  
    
      
        
          p 
          ′ 
         
        = 
        
          ρ 
          
            0 
           
         
        
          [ 
          
            
              
                
                  ∂ 
                  ϕ 
                 
                
                  ∂ 
                  t 
                 
               
             
            + 
            ( 
            
              u 
             
            ⋅ 
            ∇ 
            ) 
            ϕ 
           
          ] 
         
       
     
    {\displaystyle p'=\rho _{0}\left[{\frac {\partial \phi }{\partial t}}+(\mathbf {u} \cdot \nabla )\phi \right]} 
   
 Now, when we use this relation with the fact that 
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              ∂ 
              
                p 
                ′ 
               
             
            
              ∂ 
              t 
             
           
         
        − 
        
          ρ 
          
            0 
           
         
        
          ∇ 
          
            2 
           
         
        ϕ 
        + 
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          u 
         
        ⋅ 
        ∇ 
        
          p 
          ′ 
         
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial p'}{\partial t}}-\rho _{0}\nabla ^{2}\phi +{\frac {1}{c^{2}}}\mathbf {u} \cdot \nabla p'=0} 
   
 
  
    
      
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              ϕ 
             
            
              ∂ 
              
                t 
                
                  2 
                 
               
             
           
         
        − 
        
          ∇ 
          
            2 
           
         
        ϕ 
        + 
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            ∂ 
            
              ∂ 
              t 
             
           
         
        [ 
        ( 
        
          u 
         
        ⋅ 
        ∇ 
        ) 
        ϕ 
        ] 
        + 
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          
            ∂ 
            
              ∂ 
              t 
             
           
         
        ( 
        
          u 
         
        ⋅ 
        ∇ 
        ϕ 
        ) 
        + 
        
          
            1 
            
              c 
              
                2 
               
             
           
         
        
          u 
         
        ⋅ 
        ∇ 
        [ 
        ( 
        
          u 
         
        ⋅ 
        ∇ 
        ) 
        ϕ 
        ] 
        = 
        0 
       
     
    {\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\phi }{\partial t^{2}}}-\nabla ^{2}\phi +{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}[(\mathbf {u} \cdot \nabla )\phi ]+{\frac {1}{c^{2}}}{\frac {\partial }{\partial t}}(\mathbf {u} \cdot \nabla \phi )+{\frac {1}{c^{2}}}\mathbf {u} \cdot \nabla [(\mathbf {u} \cdot \nabla )\phi ]=0} 
   
 We can write this in a familiar form as
  
    
      
        
          [ 
          
            
              
                1 
                
                  c 
                  
                    2 
                   
                 
               
             
            
              
                ( 
                
                  
                    
                      ∂ 
                      
                        ∂ 
                        t 
                       
                     
                   
                  + 
                  
                    u 
                   
                  ⋅ 
                  ∇ 
                 
                ) 
               
              
                2 
               
             
            − 
            
              ∇ 
              
                2 
               
             
           
          ] 
         
        ϕ 
        = 
        0 
       
     
    {\displaystyle \left[{\frac {1}{c^{2}}}\left({\frac {\partial }{\partial t}}+\mathbf {u} \cdot \nabla \right)^{2}-\nabla ^{2}\right]\phi =0} 
   
 This differential equation must be solved with the appropriate boundary conditions. Note that setting 
  
    
      
        
          u 
         
        = 
        0 
       
     
    {\displaystyle \mathbf {u} =0} 
   
 
  
    
      
        
          
            
              
                
                  v 
                 
               
              
                = 
                − 
                ∇ 
                ϕ 
               
             
            
              
                
                  p 
                  ′ 
                 
               
              
                = 
                
                  ρ 
                  
                    0 
                   
                 
                
                  ( 
                  
                    
                      
                        ∂ 
                        
                          ∂ 
                          t 
                         
                       
                     
                    + 
                    
                      u 
                     
                    ⋅ 
                    ∇ 
                   
                  ) 
                 
                ϕ 
               
             
            
              
                
                  ρ 
                  ′ 
                 
               
              
                = 
                
                  
                    
                      ρ 
                      
                        0 
                       
                     
                    
                      c 
                      
                        2 
                       
                     
                   
                 
                
                  ( 
                  
                    
                      
                        ∂ 
                        
                          ∂ 
                          t 
                         
                       
                     
                    + 
                    
                      u 
                     
                    ⋅ 
                    ∇ 
                   
                  ) 
                 
                ϕ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {v} &=-\nabla \phi \\p'&=\rho _{0}\left({\frac {\partial }{\partial t}}+\mathbf {u} \cdot \nabla \right)\phi \\\rho '&={\frac {\rho _{0}}{c^{2}}}\left({\frac {\partial }{\partial t}}+\mathbf {u} \cdot \nabla \right)\phi \end{aligned}}} 
   
 Landau, L.D.; Lifshitz, E.M. (1984). Fluid Mechanics  (2nd ed.). Butterworth-Heinenann. ISBN  0-7506-2767-0  Fetter, Alexander; Walecka, John (2003). Fluid Mechanics  (1st ed.). Courier Corporation. ISBN  0-486-43261-0