複平面 中一矩形區域之黎曼ζ函數
  
    
      
        ζ 
        ( 
        z 
        ) 
       
     
    {\displaystyle \zeta (z)} 
   
 Matplotlib 程式繪圖產生,使用到定義域著色 方法。[ 1] 黎曼泽塔函數  ,写作ζ(s ) 複數  s Re(s ) > 1 
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}} 
   
 它亦可以用积分定义:
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              x 
              
                s 
                − 
                1 
               
             
            
              
                e 
                
                  x 
                 
               
              − 
              1 
             
           
         
        
          d 
         
        x 
       
     
    {\displaystyle \zeta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\mathrm {d} x} 
   
 在区域 {s  : Re(s ) > 1} 无穷级数 收敛并为一全纯函数 。欧拉 在1740年考虑过 s 切比雪夫 拓展到 s  > 1[ 2] 波恩哈德·黎曼 认识到:ζ函数可以通过解析延拓 ,把定義域 扩展到幾乎整個复数域上的全纯函数 ζ(s ) 黎曼猜想 所研究的函数。
虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论 相关,它也出现在应用统计学 (参看齊夫定律 和齊夫-曼德爾布羅特定律 物理 ,以及调音 的数学理论中。
ζ函数最早出现于1350年左右,尼克尔·奥里斯姆 发现了调和级数 发散,即:
  
    
      
        ζ 
        ( 
        1 
        ) 
        = 
        1 
        + 
        
          
            1 
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        + 
        
          
            1 
            4 
           
         
        + 
        . 
        . 
        . 
        → 
        ∞ 
       
     
    {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+...\to \infty } 
   
 
奥里斯姆对调和级数发散的“证明”
  
  
    
      
        
          
            
              
                ζ 
                ( 
                1 
                ) 
               
              
                = 
                1 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    3 
                   
                 
                + 
                
                  
                    1 
                    4 
                   
                 
                + 
                
                  
                    1 
                    5 
                   
                 
                + 
                
                  
                    1 
                    6 
                   
                 
                + 
                
                  
                    1 
                    7 
                   
                 
                + 
                
                  
                    1 
                    8 
                   
                 
                + 
                . 
                . 
                . 
               
             
            
              
                = 
                1 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                ( 
                
                  
                    1 
                    3 
                   
                 
                + 
                
                  
                    1 
                    4 
                   
                 
                ) 
                + 
                ( 
                
                  
                    1 
                    5 
                   
                 
                + 
                
                  
                    1 
                    6 
                   
                 
                + 
                
                  
                    1 
                    7 
                   
                 
                + 
                
                  
                    1 
                    8 
                   
                 
                ) 
                + 
                . 
                . 
                . 
               
             
            
              
                ≥ 
                1 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                ( 
                
                  
                    1 
                    4 
                   
                 
                + 
                
                  
                    1 
                    4 
                   
                 
                ) 
                + 
                ( 
                
                  
                    1 
                    8 
                   
                 
                + 
                
                  
                    1 
                    8 
                   
                 
                + 
                
                  
                    1 
                    8 
                   
                 
                + 
                
                  
                    1 
                    8 
                   
                 
                ) 
                + 
                . 
                . 
                . 
               
             
            
              
                = 
                1 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    2 
                   
                 
                + 
                . 
                . 
                . 
               
             
            
              
                → 
                ∞ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\zeta (1)&=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+...\\&=1+{\frac {1}{2}}+({\frac {1}{3}}+{\frac {1}{4}})+({\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}})+...\\&\geq 1+{\frac {1}{2}}+({\frac {1}{4}}+{\frac {1}{4}})+({\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}})+...\\&=1+{\frac {1}{2}}+{\frac {1}{2}}+{\frac {1}{2}}+...\\&\to \infty \\\end{aligned}}} 
   
  
第n个调和数(蓝点)与Log(n)+γ(红线)的图像 之后的一次进展来自莱昂哈德·欧拉 ,他给出了调和级数呈对数发散。
欧拉对调和级数发散速度的证明[ 3]   
为了求出调和级数的部分和,使用欧拉-麦克劳林求和公式 (当然,亦可使用阿贝尔求和公式 ):
  
    
      
        
          ∑ 
          
            y 
            < 
            n 
            ≤ 
            x 
           
         
        f 
        ( 
        n 
        ) 
        = 
        
          ∫ 
          
            y 
           
          
            x 
           
         
        f 
        ( 
        t 
        ) 
        
          d 
         
        t 
        + 
        
          ∫ 
          
            y 
           
          
            x 
           
         
        ( 
        t 
        − 
        
          ⌊ 
          t 
          ⌋ 
         
        ) 
        
          f 
          ′ 
         
        ( 
        t 
        ) 
        
          d 
         
        t 
        + 
        f 
        ( 
        x 
        ) 
        ( 
        
          ⌊ 
          x 
          ⌋ 
         
        − 
        x 
        ) 
        − 
        f 
        ( 
        y 
        ) 
        ( 
        
          ⌊ 
          y 
          ⌋ 
         
        − 
        y 
        ) 
       
     
    {\displaystyle \sum _{y<n\leq x}f(n)=\int _{y}^{x}f(t)\,\mathrm {d} t+\int _{y}^{x}(t-\left\lfloor t\right\rfloor )f'(t)\,\mathrm {d} t+f(x)(\left\lfloor x\right\rfloor -x)-f(y)(\left\lfloor y\right\rfloor -y)} 
   
 
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    n 
                    ≤ 
                    x 
                   
                 
                
                  
                    1 
                    n 
                   
                 
               
              
                = 
                1 
                + 
                
                  ∫ 
                  
                    1 
                   
                  
                    x 
                   
                 
                
                  
                    1 
                    t 
                   
                 
                
                  d 
                 
                t 
                − 
                
                  ∫ 
                  
                    1 
                   
                  
                    x 
                   
                 
                
                  
                    
                      ( 
                      t 
                      − 
                      
                        ⌊ 
                        t 
                        ⌋ 
                       
                      ) 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  
                    
                      
                        ⌊ 
                        x 
                        ⌋ 
                       
                      − 
                      x 
                     
                    x 
                   
                 
               
             
            
              
                = 
                1 
                + 
                ln 
                 
                x 
                − 
                
                  ∫ 
                  
                    1 
                   
                  
                    x 
                   
                 
                
                  
                    
                      ( 
                      t 
                      − 
                      
                        ⌊ 
                        t 
                        ⌋ 
                       
                      ) 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  O 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
            
              
                = 
                1 
                + 
                ln 
                 
                x 
                − 
                
                  ∫ 
                  
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      ( 
                      t 
                      − 
                      
                        ⌊ 
                        t 
                        ⌋ 
                       
                      ) 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  ∫ 
                  
                    x 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      ( 
                      t 
                      − 
                      
                        ⌊ 
                        t 
                        ⌋ 
                       
                      ) 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  O 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
            
              
                = 
                ln 
                 
                x 
                + 
                1 
                − 
                
                  ∫ 
                  
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      ( 
                      t 
                      − 
                      
                        ⌊ 
                        t 
                        ⌋ 
                       
                      ) 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  ∫ 
                  
                    x 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      { 
                      t 
                      } 
                     
                    
                      t 
                      
                        2 
                       
                     
                   
                 
                
                  d 
                 
                t 
                + 
                
                  O 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sum _{n\leq x}{\frac {1}{n}}&=1+\int _{1}^{x}{\frac {1}{t}}\,\mathrm {d} t-\int _{1}^{x}{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t+{\frac {\left\lfloor x\right\rfloor -x}{x}}\\&=1+\ln x-\int _{1}^{x}{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t+\mathrm {O} \left({\frac {1}{x}}\right)\\&=1+\ln x-\int _{1}^{\infty }{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t+\int _{x}^{\infty }{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t+\mathrm {O} \left({\frac {1}{x}}\right)\\&=\ln x+1-\int _{1}^{\infty }{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t+\int _{x}^{\infty }{\frac {\left\{t\right\}}{t^{2}}}\,\mathrm {d} t+\mathrm {O} \left({\frac {1}{x}}\right)\\\end{aligned}}} 
   
 
  
    
      
        1 
        − 
        
          ∫ 
          
            1 
           
          
            ∞ 
           
         
        
          
            
              ( 
              t 
              − 
              
                ⌊ 
                t 
                ⌋ 
               
              ) 
             
            
              t 
              
                2 
               
             
           
         
        
          d 
         
        t 
       
     
    {\displaystyle 1-\int _{1}^{\infty }{\frac {(t-\left\lfloor t\right\rfloor )}{t^{2}}}\,\mathrm {d} t} 
   
 歐拉-馬斯刻若尼常數 γ
再考虑剩下的一个积分,也就是
  
    
      
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        
          
            
              { 
              t 
              } 
             
            
              t 
              
                2 
               
             
           
         
        
          d 
         
        t 
       
     
    {\displaystyle \int _{x}^{\infty }{\frac {\left\{t\right\}}{t^{2}}}\,\mathrm {d} t} 
   
 
  
    
      
        
          { 
          t 
          } 
         
        ≤ 
        1 
       
     
    {\displaystyle \left\{t\right\}\leq 1} 
   
 
  
    
      
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        
          
            
              { 
              t 
              } 
             
            
              t 
              
                2 
               
             
           
         
        
          d 
         
        t 
        ≤ 
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        
          
            1 
            
              t 
              
                2 
               
             
           
         
        
          d 
         
        t 
        = 
        
          
            1 
            x 
           
         
       
     
    {\displaystyle \int _{x}^{\infty }{\frac {\left\{t\right\}}{t^{2}}}\,\mathrm {d} t\leq \int _{x}^{\infty }{\frac {1}{t^{2}}}\,\mathrm {d} t={\frac {1}{x}}} 
   
 
  
    
      
        
          ∑ 
          
            n 
            ≤ 
            x 
           
         
        
          
            1 
            n 
           
         
        = 
        ln 
         
        x 
        + 
        γ 
        + 
        
          O 
         
        ( 
        
          
            1 
            x 
           
         
        ) 
       
     
    {\displaystyle \sum _{n\leq x}{\frac {1}{n}}=\ln x+\gamma +\mathrm {O} ({\frac {1}{x}})} 
   
 
  
除此之外,他还在1735年给出了巴塞尔问题 的解答,得到
  
    
      
        ζ 
        ( 
        2 
        ) 
        = 
        
          
            
              π 
              
                2 
               
             
            6 
           
         
       
     
    {\displaystyle \zeta (2)={\frac {\pi ^{2}}{6}}} 
   
 巴塞尔问题#欧拉的錯誤證明 中看到,然而那是他的第一个证明,因而广为人知。[ 4] 
欧拉对
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  2 
                  ) 
                  = 
                  
                    
                      
                        π 
                        
                          2 
                         
                       
                      6 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (2)={\frac {\pi ^{2}}{6}}\end{smallmatrix}}} 
   
   
下面将写出欧拉对上式的证明中缺失的严格论证的部分,即对连乘积公式的证明部分,而不涉及最终的系数比较
首先考虑当n为奇数时,将
  
    
      
        
          z 
          
            n 
           
         
        − 
        
          a 
          
            n 
           
         
       
     
    {\displaystyle z^{n}-a^{n}} 
   
 
  
    
      
        a 
        , 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                1 
                n 
               
             
           
         
        , 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                2 
                n 
               
             
           
         
        , 
        . 
        . 
        . 
        , 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                
                  n 
                  − 
                  1 
                 
                n 
               
             
           
         
       
     
    {\displaystyle a,ae^{2\pi i{\frac {1}{n}}},ae^{2\pi i{\frac {2}{n}}},...,ae^{2\pi i{\frac {n-1}{n}}}} 
   
 
由于n为奇数,所以可以将除了z=a外的其他根及其共轭一一配对,即  将共轭的根一一配对 
  
    
      
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
        , 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                
                  n 
                  − 
                  k 
                 
                n 
               
             
           
         
        = 
        a 
        
          e 
          
            − 
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
       
     
    {\displaystyle ae^{2\pi i{\frac {k}{n}}},ae^{2\pi i{\frac {n-k}{n}}}=ae^{-2\pi i{\frac {k}{n}}}} 
   
 韦达定理 可以还原出每对根的最小多项式:
  
    
      
        
          x 
          
            1 
           
         
        + 
        
          x 
          
            2 
           
         
        = 
        − 
        
          
            
              a 
              
                1 
               
             
            
              a 
              
                0 
               
             
           
         
        = 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
        + 
        a 
        
          e 
          
            − 
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
        = 
        cos 
         
        
          ( 
          
            2 
            π 
            
              
                k 
                n 
               
             
           
          ) 
         
        + 
        cos 
         
        
          ( 
          
            − 
            2 
            π 
            
              
                k 
                n 
               
             
           
          ) 
         
        = 
        2 
        cos 
         
        
          ( 
          
            
              
                2 
                π 
                k 
               
              n 
             
           
          ) 
         
       
     
    {\displaystyle x_{1}+x_{2}=-{\frac {a_{1}}{a_{0}}}=ae^{2\pi i{\frac {k}{n}}}+ae^{-2\pi i{\frac {k}{n}}}=\cos \left(2\pi {\frac {k}{n}}\right)+\cos \left(-2\pi {\frac {k}{n}}\right)=2\cos \left({\frac {2\pi k}{n}}\right)} 
   
 
  
    
      
        
          x 
          
            1 
           
         
        
          x 
          
            2 
           
         
        = 
        
          
            
              a 
              
                2 
               
             
            
              a 
              
                0 
               
             
           
         
        = 
        a 
        
          e 
          
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
        a 
        
          e 
          
            − 
            2 
            π 
            i 
            
              
                k 
                n 
               
             
           
         
        = 
        
          a 
          
            2 
           
         
       
     
    {\displaystyle x_{1}x_{2}={\frac {a_{2}}{a_{0}}}=ae^{2\pi i{\frac {k}{n}}}ae^{-2\pi i{\frac {k}{n}}}=a^{2}} 
   
 
  
    
      
        
          a 
          
            0 
           
         
        = 
        1 
       
     
    {\displaystyle a_{0}=1} 
   
 
  
    
      
        
          a 
          
            0 
           
         
        
          z 
          
            2 
           
         
        + 
        
          a 
          
            1 
           
         
        z 
        + 
        
          a 
          
            2 
           
         
        = 
        
          z 
          
            2 
           
         
        − 
        2 
        cos 
         
        
          ( 
          
            
              
                
                  2 
                  π 
                  k 
                 
                n 
               
             
           
          ) 
         
        z 
        + 
        
          a 
          
            2 
           
         
       
     
    {\displaystyle a_{0}z^{2}+a_{1}z+a_{2}=z^{2}-2\cos \left({\tfrac {2\pi k}{n}}\right)z+a^{2}} 
   
 
  
    
      
        
          
            
              
                n 
                − 
                1 
               
              2 
             
           
         
       
     
    {\displaystyle {\tfrac {n-1}{2}}} 
   
 
  
    
      
        z 
        − 
        a 
       
     
    {\displaystyle z-a} 
   
 
  
    
      
        
          z 
          
            n 
           
         
        − 
        
          a 
          
            n 
           
         
        = 
        ( 
        z 
        − 
        a 
        ) 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            
              
                n 
                − 
                1 
               
              2 
             
           
         
        
          ( 
          
            
              z 
              
                2 
               
             
            − 
            2 
            a 
            z 
            cos 
             
            
              
                
                  2 
                  k 
                  π 
                 
                n 
               
             
            + 
            
              a 
              
                2 
               
             
           
          ) 
         
       
     
    {\displaystyle z^{n}-a^{n}=(z-a)\prod _{k=1}^{\frac {n-1}{2}}\left(z^{2}-2az\cos {\frac {2k\pi }{n}}+a^{2}\right)} 
   
 
  
    
      
        z 
        = 
        1 
        + 
        
          
            x 
            N 
           
         
        , 
        a 
        = 
        1 
        − 
        
          
            x 
            N 
           
         
        , 
        N 
        = 
        n 
       
     
    {\displaystyle z=1+{\frac {x}{N}},a=1-{\frac {x}{N}},N=n} 
   
 
  
    
      
        
          
            
              
                
                  
                    ( 
                    
                      1 
                      + 
                      
                        
                          x 
                          N 
                         
                       
                     
                    ) 
                   
                  
                    N 
                   
                 
                − 
                
                  
                    ( 
                    
                      1 
                      − 
                      
                        
                          x 
                          N 
                         
                       
                     
                    ) 
                   
                  
                    N 
                   
                 
               
              
                = 
                
                  [ 
                  
                    
                      ( 
                      
                        1 
                        + 
                        
                          
                            x 
                            N 
                           
                         
                       
                      ) 
                     
                    − 
                    
                      ( 
                      
                        1 
                        − 
                        
                          
                            x 
                            N 
                           
                         
                       
                      ) 
                     
                   
                  ] 
                 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  [ 
                  
                    
                      
                        ( 
                        
                          1 
                          + 
                          
                            
                              x 
                              N 
                             
                           
                         
                        ) 
                       
                      
                        2 
                       
                     
                    − 
                    2 
                    
                      ( 
                      
                        1 
                        + 
                        
                          
                            x 
                            N 
                           
                         
                       
                      ) 
                     
                    
                      ( 
                      
                        1 
                        − 
                        
                          
                            x 
                            N 
                           
                         
                       
                      ) 
                     
                    cos 
                     
                    
                      ( 
                      
                        
                          
                            2 
                            π 
                            k 
                           
                          N 
                         
                       
                      ) 
                     
                    + 
                    
                      
                        ( 
                        
                          1 
                          − 
                          
                            
                              x 
                              N 
                             
                           
                         
                        ) 
                       
                      
                        2 
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      2 
                      x 
                     
                    N 
                   
                 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  [ 
                  
                    2 
                    + 
                    
                      
                        
                          2 
                          
                            x 
                            
                              2 
                             
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                    − 
                    2 
                    
                      ( 
                      
                        1 
                        − 
                        
                          
                            
                              x 
                              
                                2 
                               
                             
                            
                              N 
                              
                                2 
                               
                             
                           
                         
                       
                      ) 
                     
                    cos 
                     
                    
                      ( 
                      
                        
                          
                            2 
                            π 
                            k 
                           
                          N 
                         
                       
                      ) 
                     
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      2 
                      x 
                     
                    N 
                   
                 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  [ 
                  
                    2 
                    + 
                    
                      
                        
                          2 
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                    − 
                    2 
                    cos 
                     
                    
                      ( 
                      
                        
                          
                            2 
                            π 
                            k 
                           
                          N 
                         
                       
                      ) 
                     
                    + 
                    
                      
                        
                          2 
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                    cos 
                     
                    ( 
                    
                      
                        
                          2 
                          π 
                          k 
                         
                        N 
                       
                     
                    ) 
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      4 
                      x 
                     
                    N 
                   
                 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  ( 
                  
                    ( 
                    1 
                    − 
                    cos 
                     
                    ( 
                    
                      
                        
                          2 
                          π 
                          k 
                         
                        N 
                       
                     
                    ) 
                    ) 
                    + 
                    ( 
                    1 
                    + 
                    cos 
                     
                    ( 
                    
                      
                        
                          2 
                          π 
                          k 
                         
                        N 
                       
                     
                    ) 
                    ) 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                
                  
                    
                      4 
                      x 
                     
                    N 
                   
                 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  { 
                  
                    
                      [ 
                      
                        1 
                        − 
                        cos 
                         
                        
                          ( 
                          
                            
                              
                                2 
                                π 
                                k 
                               
                              N 
                             
                           
                          ) 
                         
                       
                      ] 
                     
                    
                      [ 
                      
                        1 
                        + 
                        
                          
                            
                              1 
                              + 
                              cos 
                               
                              
                                ( 
                                
                                  
                                    
                                      2 
                                      π 
                                      k 
                                     
                                    N 
                                   
                                 
                                ) 
                               
                             
                            
                              1 
                              − 
                              cos 
                               
                              ( 
                              
                                
                                  
                                    2 
                                    π 
                                    k 
                                   
                                  N 
                                 
                               
                              ) 
                             
                           
                         
                        
                          
                            
                              x 
                              
                                2 
                               
                             
                            
                              N 
                              
                                2 
                               
                             
                           
                         
                       
                      ] 
                     
                   
                  } 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left(1+{\frac {x}{N}}\right)^{N}-\left(1-{\frac {x}{N}}\right)^{N}&=\left[\left(1+{\frac {x}{N}}\right)-\left(1-{\frac {x}{N}}\right)\right]\prod _{k=1}^{\frac {N-1}{2}}\left[\left(1+{\frac {x}{N}}\right)^{2}-2\left(1+{\frac {x}{N}}\right)\left(1-{\frac {x}{N}}\right)\cos \left({\frac {2\pi k}{N}}\right)+\left(1-{\frac {x}{N}}\right)^{2}\right]\\&={\frac {2x}{N}}\prod _{k=1}^{\frac {N-1}{2}}\left[2+{\frac {2x^{2}}{N^{2}}}-2\left(1-{\frac {x^{2}}{N^{2}}}\right)\cos \left({\frac {2\pi k}{N}}\right)\right]\\&={\frac {2x}{N}}\prod _{k=1}^{\frac {N-1}{2}}\left[{2+{\frac {2{x^{2}}}{N^{2}}}-2\cos \left({\frac {2\pi k}{N}}\right)+{\frac {2{x^{2}}}{N^{2}}}\cos({\frac {2\pi k}{N}})}\right]\\&={\frac {4x}{N}}\prod _{k=1}^{\frac {N-1}{2}}\left({(1-\cos({\frac {2\pi k}{N}}))+(1+\cos({\frac {2\pi k}{N}})){\frac {x^{2}}{N^{2}}}}\right)\\&={\frac {4x}{N}}\prod _{k=1}^{\frac {N-1}{2}}\left\{\left[1-\cos \left({\frac {2\pi k}{N}}\right)\right]\left[{1+{\frac {1+\cos \left({\frac {2\pi k}{N}}\right)}{1-\cos({\frac {2\pi k}{N}})}}{\frac {x^{2}}{N^{2}}}}\right]\right\}\\\end{aligned}}} 
   
 
  
    
      
        
          
            4 
            N 
           
         
        
          ∏ 
          
            k 
            = 
            1 
           
          
            
              
                N 
                − 
                1 
               
              2 
             
           
         
        ( 
        1 
        − 
        cos 
         
        ( 
        
          
            
              2 
              π 
              k 
             
            N 
           
         
        ) 
        ) 
       
     
    {\displaystyle {\frac {4}{N}}\prod _{k=1}^{\frac {N-1}{2}}(1-\cos({\frac {2\pi k}{N}}))} 
   
 
  
    
      
        C 
        ( 
        N 
        ) 
       
     
    {\displaystyle C(N)} 
   
 
  
    
      
        
          
            ( 
            
              1 
              + 
              
                
                  x 
                  N 
                 
               
             
            ) 
           
          
            N 
           
         
        − 
        
          
            ( 
            
              1 
              − 
              
                
                  x 
                  N 
                 
               
             
            ) 
           
          
            N 
           
         
        = 
        
          C 
          ( 
          N 
          ) 
         
        x 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            
              
                N 
                − 
                1 
               
              2 
             
           
         
        
          ( 
          
            1 
            + 
            
              
                
                  1 
                  + 
                  cos 
                   
                  ( 
                  
                    
                      
                        2 
                        π 
                        k 
                       
                      N 
                     
                   
                  ) 
                 
                
                  1 
                  − 
                  cos 
                   
                  ( 
                  
                    
                      
                        2 
                        π 
                        k 
                       
                      N 
                     
                   
                  ) 
                 
               
             
            
              
                
                  x 
                  
                    2 
                   
                 
                
                  N 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \left(1+{\frac {x}{N}}\right)^{N}-\left(1-{\frac {x}{N}}\right)^{N}={C(N)}x\prod _{k=1}^{\frac {N-1}{2}}\left({1+{\frac {1+\cos({\frac {2\pi k}{N}})}{1-\cos({\frac {2\pi k}{N}})}}{\frac {x^{2}}{N^{2}}}}\right)} 
   
 
  
    
      
        
          ( 
          1 
          + 
          
            
              x 
              N 
             
           
          
            ) 
            
              N 
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            N 
           
         
        
          
            C 
            
              N 
             
            
              k 
             
           
          
            
              
                x 
                
                  k 
                 
               
              
                N 
                
                  k 
                 
               
             
           
         
       
     
    {\displaystyle {(1+{\frac {x}{N}})^{N}}=\sum _{k=0}^{N}{C_{N}^{k}{\frac {x^{k}}{N^{k}}}}} 
   
 
  
    
      
        
          ( 
          1 
          − 
          
            
              x 
              N 
             
           
          
            ) 
            
              N 
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            N 
           
         
        
          
            
              
                ( 
                − 
                1 
                ) 
               
              
                k 
               
             
           
          
            C 
            
              N 
             
            
              k 
             
           
          
            
              
                x 
                
                  k 
                 
               
              
                N 
                
                  k 
                 
               
             
           
         
       
     
    {\displaystyle {(1-{\frac {x}{N}})^{N}}=\sum _{k=0}^{N}{{{(-1)}^{k}}C_{N}^{k}{\frac {x^{k}}{N^{k}}}}} 
   
 
  
    
      
        
          C 
          
            N 
           
          
            1 
           
         
        
          
            x 
            N 
           
         
        − 
        ( 
        − 
        1 
        ) 
        
          C 
          
            N 
           
          
            1 
           
         
        
          
            x 
            N 
           
         
        = 
        2 
        
          C 
          
            N 
           
          
            1 
           
         
        
          
            x 
            N 
           
         
        = 
        2 
        x 
       
     
    {\displaystyle C_{N}^{1}{\frac {x}{N}}-(-1)C_{N}^{1}{\frac {x}{N}}=2C_{N}^{1}{\frac {x}{N}}=2x} 
   
 
  
    
      
        C 
        ( 
        N 
        ) 
        = 
        2 
       
     
    {\displaystyle C(N)=2} 
   
 
  
    
      
        
          
            ( 
            
              1 
              + 
              
                
                  x 
                  N 
                 
               
             
            ) 
           
          
            N 
           
         
        − 
        
          
            ( 
            
              1 
              − 
              
                
                  x 
                  N 
                 
               
             
            ) 
           
          
            N 
           
         
        = 
        2 
        x 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            
              
                N 
                − 
                1 
               
              2 
             
           
         
        
          ( 
          
            1 
            + 
            
              
                
                  1 
                  + 
                  cos 
                   
                  ( 
                  
                    
                      
                        2 
                        π 
                        k 
                       
                      N 
                     
                   
                  ) 
                 
                
                  1 
                  − 
                  cos 
                   
                  ( 
                  
                    
                      
                        2 
                        π 
                        k 
                       
                      N 
                     
                   
                  ) 
                 
               
             
            
              
                
                  x 
                  
                    2 
                   
                 
                
                  N 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \left(1+{\frac {x}{N}}\right)^{N}-\left(1-{\frac {x}{N}}\right)^{N}=2x\prod _{k=1}^{\frac {N-1}{2}}\left({1+{\frac {1+\cos({\frac {2\pi k}{N}})}{1-\cos({\frac {2\pi k}{N}})}}{\frac {x^{2}}{N^{2}}}}\right)} 
   
 
  
    
      
        θ 
        = 
        
          
            
              2 
              π 
              k 
             
            N 
           
         
       
     
    {\displaystyle \theta ={\frac {2\pi k}{N}}} 
   
 
  
    
      
        cos 
         
        ( 
        θ 
        ) 
        = 
        1 
        − 
        
          
            
              θ 
              
                2 
               
             
            2 
           
         
        + 
        
          O 
         
        ( 
        
          θ 
          
            3 
           
         
        ) 
       
     
    {\displaystyle \cos(\theta )=1-{\frac {\theta ^{2}}{2}}+\mathrm {O} (\theta ^{3})} 
   
 
  
    
      
        
          
            
              
                
                  
                    ( 
                    
                      1 
                      + 
                      
                        
                          x 
                          N 
                         
                       
                     
                    ) 
                   
                  
                    N 
                   
                 
                − 
                
                  
                    ( 
                    
                      1 
                      − 
                      
                        
                          x 
                          N 
                         
                       
                     
                    ) 
                   
                  
                    N 
                   
                 
               
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  [ 
                  
                    1 
                    + 
                    
                      
                        
                          1 
                          + 
                          cos 
                           
                          
                            ( 
                            
                              
                                
                                  2 
                                  π 
                                  k 
                                 
                                N 
                               
                             
                            ) 
                           
                         
                        
                          1 
                          − 
                          cos 
                           
                          
                            ( 
                            
                              
                                
                                  2 
                                  π 
                                  k 
                                 
                                N 
                               
                             
                            ) 
                           
                         
                       
                     
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  { 
                  
                    1 
                    + 
                    
                      
                        
                          1 
                          + 
                          
                            [ 
                            
                              1 
                              − 
                              
                                
                                  
                                    θ 
                                    
                                      2 
                                     
                                   
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  θ 
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ] 
                           
                         
                        
                          1 
                          − 
                          
                            [ 
                            
                              1 
                              − 
                              
                                
                                  
                                    θ 
                                    
                                      2 
                                     
                                   
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  θ 
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ] 
                           
                         
                       
                     
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                   
                  } 
                 
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  [ 
                  
                    1 
                    + 
                    
                      
                        
                          2 
                          − 
                          
                            
                              
                                θ 
                                
                                  2 
                                 
                               
                              2 
                             
                           
                          + 
                          
                            O 
                           
                          
                            ( 
                            
                              θ 
                              
                                3 
                               
                             
                            ) 
                           
                         
                        
                          
                            
                              
                                θ 
                                
                                  2 
                                 
                               
                              2 
                             
                           
                          + 
                          
                            O 
                           
                          
                            ( 
                            
                              θ 
                              
                                3 
                               
                             
                            ) 
                           
                         
                       
                     
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          N 
                          
                            2 
                           
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          
                            ( 
                            
                              4 
                              − 
                              
                                θ 
                                
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  θ 
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ) 
                           
                          
                            x 
                            
                              2 
                             
                           
                         
                        
                          
                            ( 
                            
                              
                                θ 
                                
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  θ 
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ) 
                           
                          
                            N 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          
                            ( 
                            
                              4 
                              − 
                              
                                
                                  ( 
                                  
                                    
                                      
                                        2 
                                        k 
                                        π 
                                       
                                      N 
                                     
                                   
                                  ) 
                                 
                                
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  
                                    ( 
                                    
                                      
                                        
                                          2 
                                          k 
                                          π 
                                         
                                        N 
                                       
                                     
                                    ) 
                                   
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ) 
                           
                          
                            x 
                            
                              2 
                             
                           
                         
                        
                          
                            ( 
                            
                              
                                
                                  ( 
                                  
                                    
                                      
                                        2 
                                        k 
                                        π 
                                       
                                      N 
                                     
                                   
                                  ) 
                                 
                                
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  
                                    ( 
                                    
                                      
                                        
                                          2 
                                          k 
                                          π 
                                         
                                        N 
                                       
                                     
                                    ) 
                                   
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ) 
                           
                          
                            N 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    
                      
                        N 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          
                            ( 
                            
                              4 
                              − 
                              
                                
                                  ( 
                                  
                                    
                                      
                                        2 
                                        k 
                                        π 
                                       
                                      N 
                                     
                                   
                                  ) 
                                 
                                
                                  2 
                                 
                               
                              + 
                              
                                O 
                               
                              
                                ( 
                                
                                  
                                    ( 
                                    
                                      
                                        
                                          2 
                                          k 
                                          π 
                                         
                                        N 
                                       
                                     
                                    ) 
                                   
                                  
                                    3 
                                   
                                 
                                ) 
                               
                             
                            ) 
                           
                          
                            x 
                            
                              2 
                             
                           
                         
                        
                          ( 
                          2 
                          k 
                          π 
                          
                            ) 
                            
                              2 
                             
                           
                          + 
                          
                            O 
                           
                          
                            ( 
                            
                              
                                
                                  ( 
                                  2 
                                  k 
                                  π 
                                  
                                    ) 
                                    
                                      3 
                                     
                                   
                                 
                                N 
                               
                             
                            ) 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left(1+{\frac {x}{N}}\right)^{N}-\left(1-{\frac {x}{N}}\right)^{N}&=2x\prod _{k=1}^{\frac {N-1}{2}}\left[1+{\frac {1+\cos \left({\frac {2\pi k}{N}}\right)}{1-\cos \left({\frac {2\pi k}{N}}\right)}}{\frac {x^{2}}{N^{2}}}\right]\\&=2x\prod _{k=1}^{\frac {N-1}{2}}\left\{1+{\frac {1+\left[1-{\frac {\theta ^{2}}{2}}+\mathrm {O} \left(\theta ^{3}\right)\right]}{1-\left[1-{\frac {\theta ^{2}}{2}}+\mathrm {O} \left(\theta ^{3}\right)\right]}}{\frac {x^{2}}{N^{2}}}\right\}\\&=2x\prod _{k=1}^{\frac {N-1}{2}}\left[1+{\frac {2-{\frac {\theta ^{2}}{2}}+\mathrm {O} \left(\theta ^{3}\right)}{{\frac {\theta ^{2}}{2}}+\mathrm {O} \left(\theta ^{3}\right)}}{\frac {x^{2}}{N^{2}}}\right]\\&=2x\prod _{k=1}^{\frac {N-1}{2}}\left(1+{\frac {\left(4-\theta ^{2}+\mathrm {O} \left(\theta ^{3}\right)\right)x^{2}}{\left(\theta ^{2}+\mathrm {O} \left(\theta ^{3}\right)\right)N^{2}}}\right)\\&=2x\prod _{k=1}^{\frac {N-1}{2}}\left(1+{\frac {\left(4-\left({\frac {2k\pi }{N}}\right)^{2}+\mathrm {O} \left(\left({\frac {2k\pi }{N}}\right)^{3}\right)\right)x^{2}}{\left(\left({\frac {2k\pi }{N}}\right)^{2}+\mathrm {O} \left(\left({\frac {2k\pi }{N}}\right)^{3}\right)\right)N^{2}}}\right)\\&=2x\prod _{k=1}^{\frac {N-1}{2}}\left(1+{\frac {\left(4-\left({\frac {2k\pi }{N}}\right)^{2}+\mathrm {O} \left(\left({\frac {2k\pi }{N}}\right)^{3}\right)\right)x^{2}}{(2k\pi )^{2}+\mathrm {O} \left({\frac {(2k\pi )^{3}}{N}}\right)}}\right)\end{aligned}}} 
   
 
  
    
      
        
          lim 
          
            N 
            → 
            ∞ 
           
         
        ( 
        1 
        + 
        
          
            x 
            N 
           
         
        
          ) 
          
            N 
           
         
        − 
        ( 
        1 
        − 
        
          
            x 
            N 
           
         
        
          ) 
          
            N 
           
         
        = 
        
          e 
          
            x 
           
         
        − 
        
          e 
          
            − 
            x 
           
         
       
     
    {\displaystyle \lim _{N\to \infty }(1+{\frac {x}{N}})^{N}-(1-{\frac {x}{N}})^{N}=e^{x}-e^{-x}} 
   
 
  
    
      
        
          
            
              
                
                  e 
                  
                    x 
                   
                 
                − 
                
                  e 
                  
                    − 
                    x 
                   
                 
               
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          ( 
                          4 
                          + 
                          o 
                          ( 
                          1 
                          ) 
                          ) 
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        
                          
                            
                              
                                ( 
                                2 
                                k 
                                π 
                                ) 
                               
                              
                                2 
                               
                             
                           
                          + 
                          o 
                          ( 
                          1 
                          ) 
                         
                       
                     
                   
                  ) 
                 
                  
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          ( 
                          1 
                          + 
                          o 
                          ( 
                          1 
                          ) 
                          ) 
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        
                          
                            
                              k 
                              
                                2 
                               
                             
                           
                          
                            
                              π 
                              
                                2 
                               
                             
                           
                          + 
                          o 
                          ( 
                          1 
                          ) 
                         
                       
                     
                   
                  ) 
                 
                  
               
             
            
              
                = 
                2 
                x 
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          
                            
                              k 
                              
                                2 
                               
                             
                           
                          
                            
                              π 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                  ) 
                 
                  
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}e^{x}-e^{-x}&=2x\prod _{k=1}^{\infty }\left({1+{\frac {(4+o(1)){x^{2}}}{{{(2k\pi )}^{2}}+o(1)}}}\right)\ \\&=2x\prod _{k=1}^{\infty }\left({1+{\frac {(1+o(1)){x^{2}}}{{k^{2}}{\pi ^{2}}+o(1)}}}\right)\ \\&=2x\prod _{k=1}^{\infty }\left({1+{\frac {x^{2}}{{k^{2}}{\pi ^{2}}}}}\right)\ \\\end{aligned}}} 
   
 
  
    
      
        
          e 
          
            x 
           
         
        − 
        
          e 
          
            − 
            x 
           
         
        = 
        − 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              x 
              
                ) 
                
                  k 
                 
               
              − 
              
                x 
                
                  k 
                 
               
             
            
              k 
              ! 
             
           
         
       
     
    {\displaystyle e^{x}-e^{-x}=-\sum _{k=0}^{\infty }{\frac {(-x)^{k}-x^{k}}{k!}}} 
   
 
  
    
      
        k 
        = 
        3 
       
     
    {\displaystyle k=3} 
   
 
  
    
      
        
          
            
              2 
              
                x 
                
                  3 
                 
               
             
            
              3 
              ! 
             
           
         
       
     
    {\displaystyle {\frac {2x^{3}}{3!}}} 
   
 
同时展开右式可得右式的三次项为 
  
    
      
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            
              
                2 
                
                  
                    k 
                    
                      2 
                     
                   
                  
                    π 
                    
                      2 
                     
                   
                 
               
             
           
          ) 
         
        
          x 
          
            3 
           
         
       
     
    {\displaystyle \left(\sum _{k=1}^{\infty }{\frac {2}{k^{2}\pi ^{2}}}\right)x^{3}} 
   
 
  
    
      
        
          
            2 
            
              3 
              ! 
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            2 
            
              
                k 
                
                  2 
                 
               
              
                π 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {2}{3!}}=\sum _{k=1}^{\infty }{\frac {2}{k^{2}\pi ^{2}}}} 
   
 
  
    
      
        
          
            
              π 
              
                2 
               
             
            6 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              k 
              
                2 
               
             
           
         
        = 
        ζ 
        
          ( 
          2 
          ) 
         
       
     
    {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}=\zeta \left(2\right)} 
   
 
  
欧拉在1737年还发现了欧拉乘积公式 :
  
    
      
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              n 
              
                s 
               
             
           
         
        = 
        
          ∏ 
          
            p 
           
         
        ( 
        1 
        − 
        
          
            1 
            
              p 
              
                s 
               
             
           
         
        
          ) 
          
            − 
            1 
           
         
       
     
    {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p}(1-{\frac {1}{p^{s}}})^{-1}} 
   
 证明黎曼ζ函数的欧拉乘积公式 中看到。
  
    
      
        
          
            
              
                
                  Re 
                   
                  ( 
                  s 
                  ) 
                  > 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {Re} (s)>1\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                  > 
                  0 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)>0\end{smallmatrix}}} 
   
 
 1749年,欧拉通过大胆的计算發現了(以下公式當中存在定義域謬誤,後由黎曼透過解析延拓証明以下公式只適用於 Re(s ) > 1 [ 5] 
  
    
      
        ζ 
        ( 
        − 
        1 
        ) 
        = 
        1 
        + 
        2 
        + 
        3 
        + 
        4 
        + 
        5 
        + 
        . 
        . 
        . 
        = 
        − 
        
          
            1 
            12 
           
         
       
     
    {\displaystyle \zeta (-1)=1+2+3+4+5+...=-{\frac {1}{12}}} 
   
 
  
    
      
        ζ 
        ( 
        − 
        2 
        ) 
        = 
        
          1 
          
            2 
           
         
        + 
        
          2 
          
            2 
           
         
        + 
        
          3 
          
            2 
           
         
        + 
        
          4 
          
            2 
           
         
        + 
        
          5 
          
            2 
           
         
        + 
        . 
        . 
        . 
        = 
        0 
       
     
    {\displaystyle \zeta (-2)=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+...=0} 
   
 
  
    
      
        ζ 
        ( 
        − 
        3 
        ) 
        = 
        
          1 
          
            3 
           
         
        + 
        
          2 
          
            3 
           
         
        + 
        
          3 
          
            3 
           
         
        + 
        
          4 
          
            3 
           
         
        + 
        
          5 
          
            3 
           
         
        + 
        . 
        . 
        . 
        = 
        
          
            1 
            120 
           
         
       
     
    {\displaystyle \zeta (-3)=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+...={\frac {1}{120}}} 
   
 
波恩哈德·黎曼 对ζ解析延拓,用于素数的分布理论将欧拉所做的一切牢牢地置于坚石之上的是黎曼,他在1859年的论文论小于给定数值的素数个数 [ 6] 
第一积分表示:    
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              x 
              
                s 
                − 
                1 
               
             
            
              
                e 
                
                  x 
                 
               
              − 
              1 
             
           
         
        
          d 
         
        x 
       
     
    {\displaystyle \zeta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x} 
   
  
完备化的ζ,即黎曼ξ函数 :    
  
    
      
        ξ 
        ( 
        s 
        ) 
        = 
        
          π 
          
            − 
            
              
                s 
                2 
               
             
           
         
        Γ 
        
          ( 
          
            
              s 
              2 
             
           
          ) 
         
        ζ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \xi (s)=\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)} 
   
 
  
    
      
        ξ 
        ( 
        s 
        ) 
        = 
        ξ 
        ( 
        1 
        − 
        s 
        ) 
       
     
    {\displaystyle \xi (s)=\xi (1-s)} 
   
  
第二积分表示:    
  
    
      
        φ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            π 
            
              n 
              
                2 
               
             
            x 
           
         
       
     
    {\displaystyle \varphi (x)=\sum _{n=1}^{\infty }e^{-\pi n^{2}x}} 
   
 
  
    
      
        ξ 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        φ 
        ( 
        x 
        ) 
        
          x 
          
            
              
                s 
                2 
               
             
            − 
            1 
           
         
        
          d 
         
        x 
       
     
    {\displaystyle \xi (s)=\int _{0}^{\infty }\varphi (x)x^{{\frac {s}{2}}-1}\,\mathrm {d} x} 
   
  
黎曼 - 冯·曼戈尔特公式 
  
    
      
        
          
            
              
                
                  0 
                  < 
                  N 
                   
                  ( 
                  T 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}0<\operatorname {N} (T)\end{smallmatrix}}} 
   
 
  
    
      
        N 
        ( 
        T 
        ) 
        = 
        
          
            T 
            
              2 
              π 
             
           
         
        log 
         
        
          
            T 
            
              2 
              π 
             
           
         
        − 
        
          
            T 
            
              2 
              π 
             
           
         
        + 
        
          O 
         
        ( 
        log 
         
        T 
        ) 
       
     
    {\displaystyle N(T)={\frac {T}{2\pi }}\log {\frac {T}{2\pi }}-{\frac {T}{2\pi }}+\mathrm {O} (\log T)} 
   
 黎曼猜想 :ζ函数的所有非平凡零点的实部非常有可能均为
  
    
      
        
          
            
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}\end{smallmatrix}}} 
   
 第三积分表示:    
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
        
          ∮ 
          
            γ 
           
         
        
          
            
              
                
                  z 
                  
                    s 
                    − 
                    1 
                   
                 
               
              
                
                  e 
                  
                    z 
                   
                 
               
             
            
              1 
              − 
              
                
                  e 
                  
                    z 
                   
                 
               
             
           
         
        
          d 
         
        z 
       
     
    {\displaystyle \zeta (s)={\frac {1}{2\pi i}}\Gamma (1-s)\oint _{\gamma }{\frac {{z^{s-1}}{e^{z}}}{1-{e^{z}}}}\,\mathrm {d} z} 
   
  第三积分表示的围道γ 黎曼-西格尔公式 :给出计算ξ函数的数值的方法零点的计算:计算了虚部介于0与100的所有零点的数值 
素数的分布公式:引入黎曼素数计数函数 ,给出了它与ζ函数的关系 ζ(1+it)的图像,蓝色为实部,黄色为虚部 1896年,雅克·阿达马 与夏尔-让·德拉瓦莱·普桑 几乎同时地证明了
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  Re 
                   
                  ( 
                  s 
                  ) 
                  = 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {Re} (s)=1\end{smallmatrix}}} 
   
 素数定理 的证明。
1900年,希尔伯特 在巴黎的第二届国际数学家大会上作了题为《数学问题》的演讲,提出了23道最重要的数学问题,黎曼假设在其中作为第8题出现。希尔伯特-波利亚猜想 ,具体时间及场合未知。
虚部介于0与T的零点数量(蓝点)与黎曼-冯·曼格尔特公式(红线)的图像 1914年,哈那德·玻爾 和愛德蒙·蘭道 证明了玻爾-蘭道定理 :含有临界线的任意带状区域都几乎包含了ζ的所有非平凡零点,表明了临界线为零点汇聚的“中心位置”。
1921年,哈代 和李特尔伍德 证明了存在常数T,使临界线上虚部位于0与T之间的非平凡零点的数量至少为
  
    
      
        
          
            
              
                
                  K 
                  T 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}KT\end{smallmatrix}}} 
   
 
1942年,阿特勒·塞尔伯格 更进一步,证明了存在常数T,使临界线上虚部位于0与T之间的非平凡零点的数量至少为
  
    
      
        
          
            
              
                
                  K 
                  T 
                  log 
                   
                  T 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}KT\log T\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  Re 
                   
                  ( 
                  s 
                  ) 
                  = 
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {Re} (s)={\frac {1}{2}}\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  0 
                  < 
                  Re 
                   
                  ( 
                  s 
                  ) 
                  < 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}0<\operatorname {Re} (s)<1\end{smallmatrix}}} 
   
 
对ζ函数解析延拓时使用的围道 ζ函数原本定义在右半平面
  
    
      
        
          
            
              
                
                  Re 
                   
                  s 
                  > 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {Re} s>1\end{smallmatrix}}} 
   
 全纯函数 
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              n 
              
                s 
               
             
           
         
        = 
        
          
            1 
            
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              x 
              
                s 
                − 
                1 
               
             
            
              
                e 
                
                  x 
                 
               
              − 
              1 
             
           
         
        
          d 
         
        x 
       
     
    {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x} 
   
 
  
    
      
        ( 
        Re 
         
        s 
        > 
        1 
        ) 
       
     
    {\displaystyle (\operatorname {Re} s>1)} 
   
 解析延拓后在全局具有积分表达式
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
        
          ∮ 
          
            γ 
           
         
        
          
            
              
                
                  z 
                  
                    s 
                    − 
                    1 
                   
                 
               
              
                
                  e 
                  
                    z 
                   
                 
               
             
            
              1 
              − 
              
                
                  e 
                  
                    z 
                   
                 
               
             
           
         
        
          d 
         
        z 
       
     
    {\displaystyle \zeta (s)={\frac {1}{2\pi i}}\Gamma (1-s)\oint _{\gamma }{\frac {{z^{s-1}}{e^{z}}}{1-{e^{z}}}}\,\mathrm {d} z} 
   
 满足函数方程
  
    
      
        ζ 
        ( 
        1 
        − 
        s 
        ) 
        = 
        2 
        ( 
        2 
        π 
        
          ) 
          
            − 
            s 
           
         
        Γ 
        ( 
        s 
        ) 
        cos 
         
        
          ( 
          
            
              
                π 
                s 
               
              2 
             
           
          ) 
         
        ζ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \zeta (1-s)=2(2\pi )^{-s}\Gamma (s)\cos \left({\frac {\pi s}{2}}\right)\zeta (s)} 
   
 特别地,如果考虑正规化的ζ,即黎曼ξ函数 
  
    
      
        ξ 
        ( 
        s 
        ) 
        = 
        
          π 
          
            − 
            
              
                s 
                2 
               
             
           
         
        Γ 
        
          ( 
          
            
              s 
              2 
             
           
          ) 
         
        ζ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \xi (s)=\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)} 
   
 那么它满足函数方程
  
    
      
        ξ 
        ( 
        s 
        ) 
        = 
        ξ 
        ( 
        1 
        − 
        s 
        ) 
       
     
    {\displaystyle \xi (s)=\xi (1-s)} 
   
 黎曼ζ函数可看做是具有如下形式的级数的一个特例:
  
    
      
        F 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              f 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \operatorname {F} (s)=\sum _{n=1}^{\infty }{\frac {f(n)}{n^{s}}}} 
   
 这种类型的级数被称作狄利克雷级数 。当f为狄利克雷特征 时,又称作狄利克雷L函数 ,也有与黎曼猜想 相应的广义黎曼猜想 
为了方便对数论函数 作讨论,此处引入狄利克雷卷积   
  
    
      
        
          
            
              
                
                  f 
                  ∗ 
                  g 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}f*g\end{smallmatrix}}} 
   
 
  
    
      
        ( 
        f 
        ∗ 
        g 
        ) 
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            
              pq 
             
            = 
            n 
           
         
        f 
        ( 
        p 
        ) 
        g 
        ( 
        q 
        ) 
       
     
    {\displaystyle (f*g)(n)=\sum _{{\text{pq}}=n}f(p)g(q)} 
   
 
设  
  
    
      
        F 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              f 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \operatorname {F} (s)=\sum _{n=1}^{\infty }{\frac {f(n)}{n^{s}}}} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              g 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {g(n)}{n^{s}}}} 
   
 
  
    
      
        F 
         
        ( 
        s 
        ) 
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              ( 
              f 
              ∗ 
              g 
              ) 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \operatorname {F} (s)\operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {(f*g)(n)}{n^{s}}}} 
   
 
並不直覺?请看证明
  
事实上,
  
    
      
        
          
            
              
                F 
                 
                ( 
                s 
                ) 
                G 
                 
                ( 
                s 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      f 
                      ( 
                      n 
                      ) 
                     
                    
                      n 
                      
                        s 
                       
                     
                   
                 
                
                  ∑ 
                  
                    m 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      g 
                      ( 
                      m 
                      ) 
                     
                    
                      m 
                      
                        s 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ∑ 
                  
                    m 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      f 
                      ( 
                      n 
                      ) 
                      g 
                      ( 
                      m 
                      ) 
                     
                    
                      ( 
                      n 
                      m 
                      
                        ) 
                        
                          s 
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {F} (s)\operatorname {G} (s)&=\sum _{n=1}^{\infty }{\frac {f(n)}{n^{s}}}\sum _{m=1}^{\infty }{\frac {g(m)}{m^{s}}}\\&=\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }{\frac {f(n)g(m)}{(nm)^{s}}}\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    m 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      f 
                      ( 
                      n 
                      ) 
                      g 
                      ( 
                      m 
                      ) 
                     
                    
                      ( 
                      n 
                      m 
                      
                        ) 
                        
                          s 
                         
                       
                     
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ∑ 
                  
                    
                      mn 
                     
                    = 
                    k 
                   
                 
                
                  
                    
                      f 
                      ( 
                      m 
                      ) 
                      g 
                      ( 
                      n 
                      ) 
                     
                    
                      ( 
                      m 
                      n 
                      
                        ) 
                        
                          s 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ∑ 
                  
                    
                      mn 
                     
                    = 
                    k 
                   
                 
                
                  
                    
                      f 
                      ( 
                      m 
                      ) 
                      g 
                      ( 
                      n 
                      ) 
                     
                    
                      k 
                      
                        s 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                ( 
                
                  ∑ 
                  
                    
                      mn 
                     
                    = 
                    k 
                   
                 
                f 
                ( 
                m 
                ) 
                g 
                ( 
                n 
                ) 
                ) 
                
                  k 
                  
                    − 
                    s 
                   
                 
               
             
            
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                ( 
                f 
                ∗ 
                g 
                ) 
                ( 
                k 
                ) 
                
                  k 
                  
                    − 
                    s 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sum _{m=1}^{\infty }{\frac {f(n)g(m)}{(nm)^{s}}}&=\sum _{k=1}^{\infty }\sum _{{\text{mn}}=k}{\frac {f(m)g(n)}{(mn)^{s}}}\\&=\sum _{k=1}^{\infty }\sum _{{\text{mn}}=k}{\frac {f(m)g(n)}{k^{s}}}\\&=\sum _{k=1}^{\infty }(\sum _{{\text{mn}}=k}f(m)g(n))k^{-s}\\&=\sum _{k=1}^{\infty }(f*g)(k)k^{-s}\\\end{aligned}}} 
   
 
  
于是,如果数论函数
  
    
      
        
          
            
              
                
                  h 
                  = 
                  1 
                  ∗ 
                  g 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}h=1*g\end{smallmatrix}}} 
   
 
  
    
      
        h 
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            d 
            ‖ 
            n 
           
         
        g 
        ( 
        d 
        ) 
       
     
    {\displaystyle h(n)=\sum _{d\|n}g(d)} 
   
 
  
    
      
        
          
            
              
                
                  h 
                  ( 
                  n 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}h(n)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  g 
                  ( 
                  d 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}g(d)\end{smallmatrix}}} 
   
 默比乌斯反演公式 相互转换)
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              h 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        ζ 
        ( 
        s 
        ) 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              g 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
       
     
    {\displaystyle \operatorname {H} (s)=\sum _{n=1}^{\infty }{\frac {h(n)}{n^{s}}}=\zeta (s)\sum _{n=1}^{\infty }{\frac {g(n)}{n^{s}}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  g 
                  ( 
                  n 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}g(n)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  h 
                  ( 
                  n 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}h(n)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  g 
                  ( 
                  n 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}g(n)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 
  
    
      
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              g 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        
          
            
              H 
               
              ( 
              s 
              ) 
             
            
              ζ 
              ( 
              s 
              ) 
             
           
         
       
     
    {\displaystyle \sum _{n=1}^{\infty }{\frac {g(n)}{n^{s}}}={\frac {\operatorname {H} (s)}{\zeta (s)}}} 
   
 
目标函数名 
g(n) 
h(n) 
G(s)或H(s) 
g(n)或h(n)与ζ函数的联系
  
莫比乌斯函数 
  
    
      
        μ 
        ( 
        n 
        ) 
        = 
        μ 
        ( 
        
          p 
          
            1 
           
          
            
              a 
              
                1 
               
             
           
         
        
          p 
          
            2 
           
          
            
              a 
              
                2 
               
             
           
         
        . 
        . 
        . 
        
          p 
          
            k 
           
          
            
              a 
              
                k 
               
             
           
         
        ) 
        = 
        
          
            { 
            
              
                
                  ( 
                  − 
                  1 
                  
                    ) 
                    
                      k 
                     
                   
                 
                
                  
                    a 
                    
                      1 
                     
                   
                  = 
                  
                    a 
                    
                      2 
                     
                   
                  = 
                  . 
                  . 
                  . 
                  = 
                  
                    a 
                    
                      k 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle \mu (n)=\mu (p_{1}^{a_{1}}p_{2}^{a_{2}}...p_{k}^{a_{k}})={\begin{cases}(-1)^{k}&a_{1}=a_{2}=...=a_{k}\\0&\mathrm {otherwise} \end{cases}}} 
   
 
  
    
      
        
          ⌊ 
          
            
              1 
              n 
             
           
          ⌋ 
         
       
     
    {\displaystyle \left\lfloor {\frac {1}{n}}\right\rfloor } 
   
 
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        1 
       
     
    {\displaystyle \operatorname {H} (s)=1} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              μ 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        
          
            1 
            
              ζ 
              ( 
              s 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}={\frac {1}{\zeta (s)}}} 
   
  
欧拉函数 
  
    
      
        φ 
        ( 
        n 
        ) 
        = 
        Card 
         
        { 
        k 
        
          | 
         
        k 
        < 
        n 
        , 
        ( 
        k 
        , 
        n 
        ) 
        = 
        1 
        } 
         
     
    {\displaystyle \varphi (n)=\operatorname {Card} \{k\,\,|k<n,\,(k,n)=1\}\quad } 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        ζ 
        ( 
        s 
        − 
        1 
        ) 
       
     
    {\displaystyle \operatorname {H} (s)=\zeta (s-1)} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              φ 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        
          
            
              ζ 
              ( 
              s 
              − 
              1 
              ) 
             
            
              ζ 
              ( 
              s 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}} 
   
  
除数函数 
  
    
      
        
          n 
          
            α 
           
         
       
     
    {\displaystyle n^{\alpha }} 
   
 
  
    
      
        
          σ 
          
            α 
           
         
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            d 
            
              | 
             
            n 
           
         
        
          d 
          
            α 
           
         
       
     
    {\displaystyle \sigma _{\alpha }(n)=\sum _{d|n}d^{\alpha }} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        ζ 
        ( 
        s 
        − 
        α 
        ) 
       
     
    {\displaystyle \operatorname {G} (s)=\zeta (s-\alpha )} 
   
 
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              
                σ 
                
                  α 
                 
               
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        ζ 
        ( 
        s 
        − 
        α 
        ) 
        ζ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \operatorname {H} (s)=\sum _{n=1}^{\infty }{\frac {\sigma _{\alpha }(n)}{n^{s}}}=\zeta (s-\alpha )\zeta (s)} 
   
  
刘维尔函数 
  
    
      
        μ 
        ( 
        n 
        ) 
        = 
        μ 
        ( 
        
          p 
          
            1 
           
          
            
              a 
              
                1 
               
             
           
         
        
          p 
          
            2 
           
          
            
              a 
              
                2 
               
             
           
         
        . 
        . 
        . 
        
          p 
          
            k 
           
          
            
              a 
              
                k 
               
             
           
         
        ) 
        = 
        
          a 
          
            1 
           
         
        + 
        
          a 
          
            2 
           
         
        + 
        . 
        . 
        . 
        + 
        
          a 
          
            k 
           
         
       
     
    {\displaystyle \mu (n)=\mu (p_{1}^{a_{1}}p_{2}^{a_{2}}...p_{k}^{a_{k}})=a_{1}+a_{2}+...+a_{k}} 
   
 
  
    
      
        
          
            { 
            
              
                
                  1 
                 
                
                  n 
                  = 
                  
                    m 
                    
                      2 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle {\begin{cases}1&n=m^{2}\\0&\mathrm {otherwise} \end{cases}}} 
   
 
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        ζ 
        ( 
        2 
        s 
        ) 
       
     
    {\displaystyle \operatorname {H} (s)=\zeta (2s)} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              λ 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        
          
            
              ζ 
              ( 
              2 
              s 
              ) 
             
            
              ζ 
              ( 
              s 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {\lambda (n)}{n^{s}}}={\frac {\zeta (2s)}{\zeta (s)}}} 
   
  
冯·曼戈尔特函数 
  
    
      
        Λ 
        ( 
        n 
        ) 
        = 
        
          
            { 
            
              
                
                  log 
                   
                  ( 
                  p 
                  ) 
                 
                
                  n 
                  = 
                  
                    p 
                    
                      k 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle \Lambda (n)={\begin{cases}\log(p)&n=p^{k}\\0&\mathrm {otherwise} \end{cases}}} 
   
 
  
    
      
        log 
         
        n 
       
     
    {\displaystyle \log n} 
   
 
  
    
      
        H 
         
        ( 
        s 
        ) 
        = 
        
          ζ 
          ′ 
         
        ( 
        s 
        ) 
       
     
    {\displaystyle \operatorname {H} (s)=\zeta '(s)} 
   
 
  
    
      
        G 
         
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              Λ 
              ( 
              n 
              ) 
             
            
              n 
              
                s 
               
             
           
         
        = 
        − 
        
          
            
              
                ζ 
                ′ 
               
              ( 
              s 
              ) 
             
            
              ζ 
              ( 
              s 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {G} (s)=\sum _{n=1}^{\infty }{\frac {\Lambda (n)}{n^{s}}}=-{\frac {\zeta '(s)}{\zeta (s)}}} 
   
  
ζ函数与数论函数存在的联系可以通过佩龙公式 转化为它和数论函数的求和的关系:设
  
    
      
        G 
        ( 
        s 
        ) 
        = 
        
          
            ∑ 
            
              n 
              = 
              1 
             
            
              ∞ 
             
           
         
        g 
        ( 
        n 
        ) 
       
     
    {\displaystyle G(s)={\sum _{n=1}^{\infty }}g(n)} 
   
 则由佩龙公式,
  
    
      
        A 
        ( 
        x 
        ) 
        = 
        
          
            
              ∑ 
              
                n 
                ≤ 
                x 
               
             
           
          ′ 
         
        g 
        ( 
        n 
        ) 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        G 
        ( 
        z 
        ) 
        
          
            
              x 
              
                z 
               
             
            z 
           
         
        
          d 
         
        z 
       
     
    {\displaystyle A(x)={\sum _{n\leq x}}'g(n)={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }G(z){\frac {x^{z}}{z}}\,\mathrm {d} z} 
   
 其中右上角的'表示如果x是整数,那么求和的最后一项要乘以
  
    
      
        
          
            
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}\end{smallmatrix}}} 
   
 
此函数和素数 的关系已由欧拉 所揭示:
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∏ 
          
            p 
           
         
        
          
            1 
            
              1 
              − 
              
                p 
                
                  − 
                  s 
                 
               
             
           
         
       
     
    {\displaystyle \zeta (s)=\prod _{p}{\frac {1}{1-p^{-s}}}} 
   
 这是一个延展到所有的质数p 的无穷乘积 ,被称为欧拉乘积 。这是几何级数 的公式和算术基本定理 的一个结果。
  
    
      
        log 
         
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            n 
           
         
        
          ∑ 
          
            p 
           
         
        
          p 
          
            − 
            n 
            s 
           
         
       
     
    {\displaystyle \log \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n}}\sum _{p}p^{-ns}} 
   
 黎曼素数计数函数(蓝色)J(x)与对数积分(金色)Li(x)的图像,x<300 黎曼素数计数函数(蓝点)J(x)与对数积分(红线)Li(x)的图像,x<1 000 000 可以使用黎曼素数计数函数 
  
    
      
        
          
            
              
                
                  J 
                   
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {J} (x)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 黎曼 在他的论文论小于给定数值的素数个数 
  
    
      
        J 
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            ≤ 
            x 
           
         
        κ 
        ( 
        n 
        ) 
       
     
    {\displaystyle \operatorname {J} (x)=\sum _{n\leq x}\kappa (n)} 
   
 其中
  
    
      
        κ 
        ( 
        n 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      1 
                      k 
                     
                   
                 
                
                  n 
                  = 
                  
                    p 
                    
                      k 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle \kappa (n)={\begin{cases}{\frac {1}{k}}&n=p^{k}\\0&\mathrm {otherwise} \end{cases}}} 
   
 
  
    
      
        
          
            
              
                
                  J 
                   
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {J} (x)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 黎曼显式公式 
  
    
      
        
          
            
              
                J 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    
                      2 
                      π 
                      i 
                     
                   
                 
                
                  ∫ 
                  
                    c 
                    − 
                    i 
                    ∞ 
                   
                  
                    c 
                    + 
                    i 
                    ∞ 
                   
                 
                log 
                 
                ζ 
                ( 
                s 
                ) 
                
                  
                    
                      x 
                      
                        s 
                       
                     
                    s 
                   
                 
                
                  d 
                 
                s 
               
             
            
              
                = 
                Li 
                 
                ( 
                x 
                ) 
                − 
                
                  ∑ 
                  
                    ρ 
                   
                 
                Li 
                 
                ( 
                
                  x 
                  
                    ρ 
                   
                 
                ) 
                + 
                
                  ∫ 
                  
                    x 
                   
                  
                    ∞ 
                   
                 
                
                  
                    1 
                    
                      t 
                      ( 
                      
                        t 
                        
                          2 
                         
                       
                      − 
                      1 
                      ) 
                      log 
                       
                      ( 
                      t 
                      ) 
                     
                   
                 
                
                  d 
                 
                x 
                − 
                log 
                 
                2 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {J} (x)&={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\log \zeta (s){\frac {x^{s}}{s}}\,\mathrm {d} s\\&=\operatorname {Li} (x)-\sum _{\rho }\operatorname {Li} (x^{\rho })+\int _{x}^{\infty }{\frac {1}{t(t^{2}-1)\log(t)}}\,\mathrm {d} x-\log 2\\\end{aligned}}} 
   
 而
  
    
      
        
          
            
              
                
                  J 
                   
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {J} (x)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  π 
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\pi (x)\end{smallmatrix}}} 
   
 莫比乌斯反演公式 完成。
  
    
      
        π 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              μ 
              ( 
              n 
              ) 
             
            n 
           
         
        J 
         
        ( 
        x 
        ) 
        = 
        J 
         
        ( 
        x 
        ) 
        + 
        
          O 
         
        ( 
        
          
            x 
           
         
        log 
         
        log 
         
        x 
        ) 
       
     
    {\displaystyle \pi (x)=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}\operatorname {J} (x)=\operatorname {J} (x)+\mathrm {O} ({\sqrt {x}}\log \log x)} 
   
 
  
    
      
        
          
            
              
                
                  J 
                   
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {J} (x)\end{smallmatrix}}} 
   
 切比雪夫函数 更为常用。
第二切比雪夫函数(蓝线)ψ(x)与y=x(金线)的图像,x<300 第二切比雪夫函数(蓝点)ψ(x)与y=x(红线)的图像,x<1 000 000 第一切比雪夫函数
  
    
      
        
          
            
              
                
                  ϑ 
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\vartheta (x)\end{smallmatrix}}} 
   
 
  
    
      
        ϑ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            p 
            ≤ 
            x 
           
         
        log 
         
        p 
       
     
    {\displaystyle \vartheta (x)=\sum _{p\leq x}\log p} 
   
 而更常用的第二切比雪夫函数
  
    
      
        
          
            
              
                
                  ψ 
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\psi (x)\end{smallmatrix}}} 
   
 
  
    
      
        ψ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            
              p 
              
                k 
               
             
            ≤ 
            x 
           
         
        log 
         
        p 
        = 
        
          ∑ 
          
            n 
            ≤ 
            x 
           
         
        Λ 
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            p 
            ≤ 
            x 
           
         
        ⌊ 
        
          log 
          
            p 
           
         
         
        x 
        ⌋ 
        log 
         
        p 
       
     
    {\displaystyle \psi (x)=\sum _{p^{k}\leq x}\log p=\sum _{n\leq x}\Lambda (n)=\sum _{p\leq x}\lfloor \log _{p}x\rfloor \log p} 
   
 其中,如前文定义的  
  
    
      
        Λ 
        ( 
        n 
        ) 
        = 
        
          
            { 
            
              
                
                  log 
                   
                  ( 
                  p 
                  ) 
                 
                
                  n 
                  = 
                  
                    p 
                    
                      k 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle \Lambda (n)={\begin{cases}\log(p)&n=p^{k}\\0&\mathrm {otherwise} \end{cases}}} 
   
 
  
    
      
        
          
            
              
                
                  ψ 
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\psi (x)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  ζ 
                  ( 
                  s 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\zeta (s)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                ψ 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    
                      2 
                      π 
                      i 
                     
                   
                 
                
                  ∫ 
                  
                    c 
                    − 
                    i 
                    ∞ 
                   
                  
                    c 
                    + 
                    i 
                    ∞ 
                   
                 
                − 
                
                  
                    
                      
                        ζ 
                        ′ 
                       
                      ( 
                      s 
                      ) 
                     
                    
                      ζ 
                      ( 
                      s 
                      ) 
                     
                   
                 
                
                  
                    
                      x 
                      
                        s 
                       
                     
                    s 
                   
                 
                
                  d 
                 
                s 
               
             
            
              
                = 
                
                  ∑ 
                  
                    n 
                    ≤ 
                    x 
                   
                 
                Λ 
                ( 
                n 
                ) 
                = 
                x 
                − 
                
                  ∑ 
                  
                    ρ 
                   
                 
                
                  
                    
                      x 
                      
                        ρ 
                       
                     
                    ρ 
                   
                 
                − 
                
                  
                    1 
                    2 
                   
                 
                log 
                 
                ( 
                1 
                − 
                
                  
                    1 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
                ) 
                − 
                log 
                 
                ( 
                2 
                π 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\psi (x)&={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }-{\frac {\zeta '(s)}{\zeta (s)}}{\frac {x^{s}}{s}}\,\mathrm {d} s\\&=\sum _{n\leq x}\Lambda (n)=x-\sum _{\rho }{\frac {x^{\rho }}{\rho }}-{\frac {1}{2}}\log(1-{\frac {1}{x^{2}}})-\log(2\pi )\\\end{aligned}}} 
   
 而
  
    
      
        
          
            
              
                
                  ψ 
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\psi (x)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  J 
                   
                  ( 
                  x 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {J} (x)\end{smallmatrix}}} 
   
 阿贝尔求和公式 :
  
    
      
        ψ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            
              p 
              
                k 
               
             
            ≤ 
            x 
           
         
        log 
         
        p 
        = 
        ψ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            
              p 
              
                k 
               
             
            ≤ 
            x 
           
         
        
          
            1 
            k 
           
         
        log 
         
        n 
        = 
        
          ∑ 
          
            n 
            ≤ 
            x 
           
         
        
          
            
              κ 
              ( 
              n 
              ) 
             
            
              log 
               
              n 
             
           
         
       
     
    {\displaystyle \psi (x)=\sum _{n=p^{k}\leq x}\log p=\psi (x)=\sum _{n=p^{k}\leq x}{\frac {1}{k}}\log n=\sum _{n\leq x}{\frac {\kappa (n)}{\log n}}} 
   
 其中κ如前文所定义,则由阿贝尔求和公式
  
    
      
        J 
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            ≤ 
            x 
           
         
        κ 
        ( 
        n 
        ) 
        = 
        
          
            
              ψ 
              ( 
              x 
              ) 
             
            
              log 
               
              x 
             
           
         
        + 
        
          ∫ 
          
            2 
           
          
            x 
           
         
        
          
            
              ψ 
              ( 
              t 
              ) 
             
            
              
                t 
                
                  2 
                 
               
              log 
               
              t 
             
           
         
        
          d 
         
        t 
        = 
        
          
            
              ψ 
              ( 
              x 
              ) 
             
            
              log 
               
              x 
             
           
         
        + 
        
          O 
         
        ( 
        
          
            x 
            
              
                log 
                
                  2 
                 
               
               
              x 
             
           
         
        ) 
       
     
    {\displaystyle \operatorname {J} (x)=\sum _{n\leq x}\kappa (n)={\frac {\psi (x)}{\log x}}+\int _{2}^{x}{\frac {\psi (t)}{t^{2}\log t}}\,\mathrm {d} t={\frac {\psi (x)}{\log x}}+\mathrm {O} ({\frac {x}{\log ^{2}x}})} 
   
 解析延拓之后的ζ函数具有零点,他们分别是分布有序的平凡零点(所有负偶数),以及临界带
  
    
      
        
          
            
              
                
                  0 
                  < 
                  Re 
                   
                  s 
                  < 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}0<\operatorname {Re} s<1\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  N 
                   
                  ( 
                  T 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\operatorname {N} (T)\end{smallmatrix}}} 
   
 
  
    
      
        
          
            
              
                
                  0 
                  < 
                  N 
                   
                  ( 
                  T 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}0<\operatorname {N} (T)\end{smallmatrix}}} 
   
 黎曼 - 冯·曼戈尔特公式 
  
    
      
        N 
        ( 
        T 
        ) 
        = 
        
          
            T 
            
              2 
              π 
             
           
         
        log 
         
        
          
            T 
            
              2 
              π 
             
           
         
        − 
        
          
            T 
            
              2 
              π 
             
           
         
        + 
        
          O 
         
        ( 
        log 
         
        T 
        ) 
       
     
    {\displaystyle N(T)={\frac {T}{2\pi }}\log {\frac {T}{2\pi }}-{\frac {T}{2\pi }}+\mathrm {O} (\log T)} 
   
 
黎曼函数在s  > 1的情况 ζ函数满足如下函数方程:
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          2 
          
            s 
           
         
        
          π 
          
            s 
            − 
            1 
           
         
        sin 
         
        
          ( 
          
            
              
                π 
                s 
               
              2 
             
           
          ) 
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
        ζ 
        ( 
        1 
        − 
        s 
        ) 
       
     
    {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)\zeta (1-s)} 
   
 对于所有C \{0,1}中的s 成立。这裡,Γ表示Γ函数 。这个公式原来用来构造解析连续性。在s  = 1,ζ函数有一个简单极点 其留数 为1。上述方程中有sin函數,
  
    
      
        sin 
         
        
          ( 
          
            
              
                π 
                s 
               
              2 
             
           
          ) 
         
       
     
    {\displaystyle \sin \left({\frac {\pi s}{2}}\right)} 
   
 s  = 2n ,這些位置是可能的零點,但s為正偶數時,
  
    
      
        sin 
         
        
          ( 
          
            
              
                π 
                s 
               
              2 
             
           
          ) 
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
       
     
    {\displaystyle \sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)} 
   
 規則函數 平凡 零點。
欧拉计算出ζ(2k ),对于偶整数 2k ,使用公式
  
    
      
        ζ 
        ( 
        2 
        k 
        ) 
        = 
        
          
            
              
                B 
                
                  2 
                  k 
                 
               
              ( 
              − 
              1 
              
                ) 
                
                  k 
                  + 
                  1 
                 
               
              ( 
              2 
              π 
              
                ) 
                
                  2 
                  k 
                 
               
             
            
              2 
              ( 
              2 
              k 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle \zeta (2k)={\frac {B_{2k}(-1)^{k+1}(2\pi )^{2k}}{2(2k)!}}} 
   
 其中B 2k  是伯努利数 。从这个,我们可以看到ζ(2)  = π2 /6, ζ(4) = π4 /90, ζ(6) = π6 /945等等。(OEIS 中的序列A046988 (页面存档备份 ,存于互联网档案馆 )/A002432 (页面存档备份 ,存于互联网档案馆 ))。这些给出了著名的π 的无穷级数。奇整数的情况没有这么简单。拉马努金 在这上面做了很多了不起的工作。
  
    
      
        s 
         
     
    {\displaystyle s\,} 
   
 欧拉 计算出。但当
  
    
      
        s 
         
     
    {\displaystyle s\,} 
   
 
  
    
      
        ζ 
        ( 
        1 
        ) 
        = 
        1 
        + 
        
          
            1 
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        + 
        ⋯ 
        = 
        ∞ 
        ; 
         
     
    {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty ;\!} 
   
 这是调和级数 。 
  
    
      
        ζ 
        
          ( 
          
            
              3 
              2 
             
           
          ) 
         
        ≈ 
        2.612 
        ; 
         
     
    {\displaystyle \zeta \left({\frac {3}{2}}\right)\approx 2.612;\!} 
   
 A078434 该值用于计算具有周期性边界条件的玻色-爱因斯坦凝聚 的临界温度以及磁系统的自旋波物理。 
  
    
      
        ζ 
        ( 
        2 
        ) 
        = 
        1 
        + 
        
          
            1 
            
              2 
              
                2 
               
             
           
         
        + 
        
          
            1 
            
              3 
              
                2 
               
             
           
         
        + 
        ⋯ 
        = 
        
          
            
              π 
              
                2 
               
             
            6 
           
         
        ≈ 
        1.645 
        ; 
         
     
    {\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\approx 1.645;\!} 
   
 A013661 即巴塞尔问题 。这个结果的倒数回答了这个问题:随机选取两个数字而互质的概率是多少?[ 7]  
  
    
      
        ζ 
        ( 
        3 
        ) 
        = 
        1 
        + 
        
          
            1 
            
              2 
              
                3 
               
             
           
         
        + 
        
          
            1 
            
              3 
              
                3 
               
             
           
         
        + 
        ⋯ 
        ≈ 
        1.202 
        ; 
         
     
    {\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots \approx 1.202;\!} 
   
 A002117 称为阿培里常數 。 
  
    
      
        ζ 
        ( 
        4 
        ) 
        = 
        1 
        + 
        
          
            1 
            
              2 
              
                4 
               
             
           
         
        + 
        
          
            1 
            
              3 
              
                4 
               
             
           
         
        + 
        ⋯ 
        = 
        
          
            
              π 
              
                4 
               
             
            90 
           
         
        ≈ 
        1.0823 
        ; 
         
     
    {\displaystyle \zeta (4)=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\approx 1.0823;\!} 
   
 A0013662 黑體輻射 裡的斯特藩-玻尔兹曼定律 和维恩近似 。
  
    
      
        
          lim 
          
            ε 
            → 
            0 
           
         
        
          
            
              ζ 
              ( 
              1 
              + 
              ε 
              ) 
              + 
              ζ 
              ( 
              1 
              − 
              ε 
              ) 
             
            2 
           
         
        = 
        γ 
       
     
    {\displaystyle \lim _{\varepsilon \to 0}{\frac {\zeta (1+\varepsilon )+\zeta (1-\varepsilon )}{2}}=\gamma } 
   
 其中γ是歐拉-馬歇羅尼常數 =
  
    
      
        0.577215... 
       
     
    {\displaystyle 0.577215...} 
   
 
同样由欧拉发现,ζ函数在负整数点的值是有理数,这在模形式中发挥着重要作用,而且ζ函数在负偶整数点的值為零。
事實上
  
    
      
        ζ 
        ( 
        − 
        n 
        ) 
        = 
        − 
        
          
            
              B 
              
                n 
                + 
                1 
               
             
            
              n 
              + 
              1 
             
           
         
       
     
    {\displaystyle \zeta (-n)=-{\frac {B_{n+1}}{n+1}}} 
   
 B n 白努利數 。
因為 B 2n +1  =0,故ζ函数在负偶整数点的值為零。
  
    
      
        ζ 
        ( 
        x 
        + 
        
          
            i 
           
         
        y 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              ( 
              y 
              ln 
               
              k 
              ) 
              − 
              
                
                  i 
                 
               
              sin 
               
              ( 
              y 
              ln 
               
              k 
              ) 
             
            
              k 
              
                x 
               
             
           
         
        , 
        y 
        ∈ 
        
          
            R 
           
         
       
     
    {\displaystyle \zeta (x+{\rm {i}}y)=\sum _{k=1}^{\infty }{\frac {\cos(y\ln k)-{\rm {i}}\sin(y\ln k)}{k^{x}}},y\in {\mathbb {R} }} 
   
 
  
    
      
        arg 
         
        [ 
        ζ 
        ( 
        x 
        + 
        
          
            i 
           
         
        y 
        ) 
        ] 
        = 
        − 
        arctan 
         
        
          
            
              
                ∑ 
                
                  k 
                  = 
                  1 
                 
                
                  ∞ 
                 
               
              
                
                  
                    sin 
                     
                    ( 
                    y 
                    ln 
                     
                    k 
                    ) 
                   
                  
                    k 
                    
                      x 
                     
                   
                 
               
             
            
              
                ∑ 
                
                  k 
                  = 
                  1 
                 
                
                  ∞ 
                 
               
              
                
                  
                    cos 
                     
                    ( 
                    y 
                    ln 
                     
                    k 
                    ) 
                   
                  
                    k 
                    
                      x 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \arg[\zeta (x+{\rm {i}}y)]=-\arctan {\frac {\sum _{k=1}^{\infty }{\frac {\sin(y\ln k)}{k^{x}}}}{\sum _{k=1}^{\infty }{\frac {\cos(y\ln k)}{k^{x}}}}}} 
   
 
  
    
      
        ζ 
        ( 
        − 
        2 
        
          n 
          
            n 
            ∈ 
            
              
                Z 
               
              
                + 
               
             
           
         
        ) 
        = 
        0 
       
     
    {\displaystyle \zeta (-2n_{n\in \mathbb {Z} ^{+}})=0} 
   
 
  
    
      
        ζ 
        ( 
        − 
        9 
        ) 
        = 
        − 
        
          
            1 
            132 
           
         
        ( 
        
          
            R 
           
         
        ) 
       
     
    {\displaystyle \zeta (-9)=-{\frac {1}{132}}({\mathfrak {R}})} 
   
 
  
    
      
        ζ 
        ( 
        − 
        7 
        ) 
        = 
        
          
            1 
            240 
           
         
        ( 
        
          
            R 
           
         
        ) 
       
     
    {\displaystyle \zeta (-7)={\frac {1}{240}}({\mathfrak {R}})} 
   
 
  
    
      
        ζ 
        ( 
        − 
        5 
        ) 
        = 
        − 
        
          
            1 
            252 
           
         
        ( 
        
          
            R 
           
         
        ) 
       
     
    {\displaystyle \zeta (-5)=-{\frac {1}{252}}({\mathfrak {R}})} 
   
 
  
    
      
        ζ 
        ( 
        − 
        3 
        ) 
        = 
        
          
            1 
            120 
           
         
        ( 
        
          
            R 
           
         
        ) 
       
     
    {\displaystyle \zeta (-3)={\frac {1}{120}}({\mathfrak {R}})} 
   
 
  
    
      
        ζ 
        ( 
        − 
        1 
        ) 
        = 
        − 
        
          
            1 
            12 
           
         
        ( 
        
          
            R 
           
         
        ) 
       
     
    {\displaystyle \zeta (-1)=-{\frac {1}{12}}({\mathfrak {R}})} 
   
 
  
    
      
        ζ 
        ( 
        0 
        ) 
        = 
        − 
        
          
            1 
            2 
           
         
       
     
    {\displaystyle \zeta (0)=-{\frac {1}{2}}} 
   
 
  
    
      
        ζ 
        ( 
        
          1 
          
            − 
           
         
        ) 
        = 
        − 
        ∞ 
       
     
    {\displaystyle \zeta (1^{-})=-\infty } 
   
 
  
    
      
        ζ 
        ( 
        
          1 
          
            + 
           
         
        ) 
        = 
        ∞ 
       
     
    {\displaystyle \zeta (1^{+})=\infty } 
   
 
  
    
      
        ζ 
        ( 
        2 
        ) 
        = 
        
          
            
              π 
              
                2 
               
             
            6 
           
         
       
     
    {\displaystyle \zeta (2)={\frac {\pi ^{2}}{6}}} 
   
 
  
    
      
        ζ 
        ( 
        4 
        ) 
        = 
        
          
            
              π 
              
                4 
               
             
            90 
           
         
       
     
    {\displaystyle \zeta (4)={\frac {\pi ^{4}}{90}}} 
   
 
  
    
      
        ζ 
        ( 
        6 
        ) 
        = 
        
          
            
              π 
              
                6 
               
             
            945 
           
         
       
     
    {\displaystyle \zeta (6)={\frac {\pi ^{6}}{945}}} 
   
 
  
    
      
        ζ 
        ( 
        8 
        ) 
        = 
        
          
            
              π 
              
                8 
               
             
            9450 
           
         
       
     
    {\displaystyle \zeta (8)={\frac {\pi ^{8}}{9450}}} 
   
 
  
    
      
        ζ 
        ( 
        10 
        ) 
        = 
        
          
            
              π 
              
                10 
               
             
            93555 
           
         
       
     
    {\displaystyle \zeta (10)={\frac {\pi ^{10}}{93555}}} 
   
 临界线上的数值计算可以通过黎曼-西格尔公式 完成。林德勒夫猜想 :对于任意给定的實数
  
    
      
        
          
            
              
                
                  ϵ 
                  > 
                  0 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{smallmatrix}\epsilon >0\end{smallmatrix}}} 
   
 
  
    
      
        ζ 
        
          ( 
          
            
              
                1 
                2 
               
             
            + 
            i 
            t 
           
          ) 
         
        = 
        
          O 
         
        ( 
        
          t 
          
            ϵ 
           
         
        ) 
       
     
    {\displaystyle \zeta \left({\frac {1}{2}}+it\right)=\mathrm {O} (t^{\epsilon })}