Mathematical functions related to Weierstrass's elliptic function
In mathematics , the Weierstrass functions  are special functions  of a complex variable  that are auxiliary to the Weierstrass elliptic function .  They are named for Karl Weierstrass . The relation between the sigma, zeta, and 
  
    
      
        ℘ 
       
     
    {\displaystyle \wp } 
   
 [ 1] 
Weierstrass sigma function [ edit ] Plot of the sigma function  using Domain coloring .  The Weierstrass sigma function  associated to a two-dimensional lattice  
  
    
      
        Λ 
        ⊂ 
        
          C 
         
       
     
    {\displaystyle \Lambda \subset \mathbb {C} } 
   
 
  
    
      
        
          
            
              
                
                  σ 
                 
                 
                
                  ( 
                  z 
                  ; 
                  Λ 
                  ) 
                 
               
              
                = 
                z 
                
                  ∏ 
                  
                    w 
                    ∈ 
                    
                      Λ 
                      
                        ∗ 
                       
                     
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        z 
                        w 
                       
                     
                   
                  ) 
                 
                exp 
                 
                
                  ( 
                  
                    
                      
                        z 
                        w 
                       
                     
                    + 
                    
                      
                        1 
                        2 
                       
                     
                    
                      
                        ( 
                        
                          
                            z 
                            w 
                           
                         
                        ) 
                       
                      
                        2 
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                z 
                
                  ∏ 
                  
                    
                      
                        
                          
                            m 
                            , 
                            n 
                            = 
                            − 
                            ∞ 
                           
                         
                        
                          
                            { 
                            m 
                            , 
                            n 
                            } 
                            ≠ 
                            0 
                           
                         
                       
                     
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        z 
                        
                          m 
                          
                            ω 
                            
                              1 
                             
                           
                          + 
                          n 
                          
                            ω 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                exp 
                 
                
                  
                    ( 
                    
                      
                        
                          z 
                          
                            m 
                            
                              ω 
                              
                                1 
                               
                             
                            + 
                            n 
                            
                              ω 
                              
                                2 
                               
                             
                           
                         
                       
                      + 
                      
                        
                          1 
                          2 
                         
                       
                      
                        
                          ( 
                          
                            
                              z 
                              
                                m 
                                
                                  ω 
                                  
                                    1 
                                   
                                 
                                + 
                                n 
                                
                                  ω 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                          ) 
                         
                        
                          2 
                         
                       
                     
                    ) 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {\sigma } {(z;\Lambda )}&=z\prod _{w\in \Lambda ^{*}}\left(1-{\frac {z}{w}}\right)\exp \left({\frac {z}{w}}+{\frac {1}{2}}\left({\frac {z}{w}}\right)^{2}\right)\\[5mu]&=z\prod _{\begin{smallmatrix}m,n=-\infty \\\{m,n\}\neq 0\end{smallmatrix}}^{\infty }\left(1-{\frac {z}{m\omega _{1}+n\omega _{2}}}\right)\exp {\left({\frac {z}{m\omega _{1}+n\omega _{2}}}+{\frac {1}{2}}\left({\frac {z}{m\omega _{1}+n\omega _{2}}}\right)^{2}\right)}\end{aligned}}} 
   
 where 
  
    
      
        
          Λ 
          
            ∗ 
           
         
       
     
    {\displaystyle \Lambda ^{*}} 
   
 
  
    
      
        Λ 
        − 
        { 
        0 
        } 
       
     
    {\displaystyle \Lambda -\{0\}} 
   
 
  
    
      
        ( 
        
          ω 
          
            1 
           
         
        , 
        
          ω 
          
            2 
           
         
        ) 
       
     
    {\displaystyle (\omega _{1},\omega _{2})} 
   
 fundamental pair of periods 
Through careful manipulation of the Weierstrass factorization theorem  as it relates also to the sine function, another potentially more manageable infinite product  definition is
  
    
      
        
          σ 
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        = 
        
          
            
              ω 
              
                i 
               
             
            π 
           
         
        exp 
         
        
          
            ( 
            
              
                
                  
                    η 
                    
                      i 
                     
                   
                  
                    z 
                    
                      2 
                     
                   
                 
                
                  ω 
                  
                    i 
                   
                 
               
             
            ) 
           
         
        sin 
         
        
          
            ( 
            
              
                
                  π 
                  z 
                 
                
                  ω 
                  
                    i 
                   
                 
               
             
            ) 
           
         
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          ( 
          
            1 
            − 
            
              
                
                  
                    sin 
                    
                      2 
                     
                   
                   
                  
                    
                      ( 
                      
                        π 
                        z 
                        
                          / 
                         
                        
                          ω 
                          
                            i 
                           
                         
                       
                      ) 
                     
                   
                 
                
                  
                    sin 
                    
                      2 
                     
                   
                   
                  
                    
                      ( 
                      
                        n 
                        π 
                        
                          ω 
                          
                            j 
                           
                         
                        
                          / 
                         
                        
                          ω 
                          
                            i 
                           
                         
                       
                      ) 
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {\sigma } {(z;\Lambda )}={\frac {\omega _{i}}{\pi }}\exp {\left({\frac {\eta _{i}z^{2}}{\omega _{i}}}\right)}\sin {\left({\frac {\pi z}{\omega _{i}}}\right)}\prod _{n=1}^{\infty }\left(1-{\frac {\sin ^{2}{\left(\pi z/\omega _{i}\right)}}{\sin ^{2}{\left(n\pi \omega _{j}/\omega _{i}\right)}}}\right)} 
   
 for any 
  
    
      
        { 
        i 
        , 
        j 
        } 
        ∈ 
        { 
        1 
        , 
        2 
        , 
        3 
        } 
       
     
    {\displaystyle \{i,j\}\in \{1,2,3\}} 
   
 
  
    
      
        i 
        ≠ 
        j 
       
     
    {\displaystyle i\neq j} 
   
 
  
    
      
        
          η 
          
            i 
           
         
        = 
        ζ 
        ( 
        
          ω 
          
            i 
           
         
        
          / 
         
        2 
        ; 
        Λ 
        ) 
       
     
    {\displaystyle \eta _{i}=\zeta (\omega _{i}/2;\Lambda )} 
   
 
  
    
      
        σ 
        ( 
        z 
        + 
        2 
        
          ω 
          
            i 
           
         
        ) 
        = 
        − 
        
          e 
          
            2 
            
              η 
              
                i 
               
             
            ( 
            z 
            + 
            
              ω 
              
                i 
               
             
            ) 
           
         
        σ 
        ( 
        z 
        ) 
       
     
    {\displaystyle \sigma (z+2\omega _{i})=-e^{2\eta _{i}(z+\omega _{i})}\sigma (z)} 
   
 
The sigma function can be used to represent an elliptic function :  
  
    
      
        f 
        ( 
        z 
        + 
        
          ω 
          
            i 
           
         
        ) 
        = 
        f 
        ( 
        z 
        ) 
        i 
        ∈ 
        { 
        1 
        , 
        … 
        , 
        n 
        } 
       
     
    {\displaystyle f(z+\omega _{i})=f(z)\quad i\in \{1,\ldots ,n\}} 
   
 zeros and poles  that lie in the period parallelogram: 
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        c 
        
          ∏ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          
            
              σ 
              ( 
              z 
              − 
              
                a 
                
                  j 
                 
               
              ) 
             
            
              σ 
              ( 
              z 
              − 
              
                b 
                
                  j 
                 
               
              ) 
             
           
         
       
     
    {\displaystyle f(z)=c\prod _{j=1}^{n}{\frac {\sigma (z-a_{j})}{\sigma (z-b_{j})}}} 
   
 Where 
  
    
      
        c 
       
     
    {\displaystyle c} 
   
 
  
    
      
        
          C 
         
       
     
    {\displaystyle \mathbb {C} } 
   
 
  
    
      
        
          a 
          
            j 
           
         
       
     
    {\displaystyle a_{j}} 
   
 
  
    
      
        
          b 
          
            j 
           
         
       
     
    {\displaystyle b_{j}} 
   
 
Weierstrass zeta function [ edit ] Plot of the zeta function  using Domain coloring   The Weierstrass zeta function  is defined by the sum
  
    
      
        
          ζ 
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        = 
        
          
            
              
                σ 
                ′ 
               
              ( 
              z 
              ; 
              Λ 
              ) 
             
            
              σ 
              ( 
              z 
              ; 
              Λ 
              ) 
             
           
         
        = 
        
          
            1 
            z 
           
         
        + 
        
          ∑ 
          
            w 
            ∈ 
            
              Λ 
              
                ∗ 
               
             
           
         
        
          ( 
          
            
              
                1 
                
                  z 
                  − 
                  w 
                 
               
             
            + 
            
              
                1 
                w 
               
             
            + 
            
              
                z 
                
                  w 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle \operatorname {\zeta } {(z;\Lambda )}={\frac {\sigma '(z;\Lambda )}{\sigma (z;\Lambda )}}={\frac {1}{z}}+\sum _{w\in \Lambda ^{*}}\left({\frac {1}{z-w}}+{\frac {1}{w}}+{\frac {z}{w^{2}}}\right).} 
   
 The Weierstrass zeta function is the logarithmic derivative  of the sigma-function. The zeta function can be rewritten as:
  
    
      
        
          ζ 
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        = 
        
          
            1 
            z 
           
         
        − 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              G 
             
           
          
            2 
            k 
            + 
            2 
           
         
        ( 
        Λ 
        ) 
        
          z 
          
            2 
            k 
            + 
            1 
           
         
       
     
    {\displaystyle \operatorname {\zeta } {(z;\Lambda )}={\frac {1}{z}}-\sum _{k=1}^{\infty }{\mathcal {G}}_{2k+2}(\Lambda )z^{2k+1}} 
   
 where 
  
    
      
        
          
            
              G 
             
           
          
            2 
            k 
            + 
            2 
           
         
       
     
    {\displaystyle {\mathcal {G}}_{2k+2}} 
   
 Eisenstein series  of weight 2k  + 2.
The derivative of the zeta function is 
  
    
      
        − 
        ℘ 
        ( 
        z 
        ) 
       
     
    {\displaystyle -\wp (z)} 
   
 
  
    
      
        ℘ 
        ( 
        z 
        ) 
       
     
    {\displaystyle \wp (z)} 
   
 Weierstrass elliptic function .
The Weierstrass zeta function should not be confused with the Riemann zeta function  in number theory .
Weierstrass eta function [ edit ] The Weierstrass eta function  is defined to be
  
    
      
        η 
        ( 
        w 
        ; 
        Λ 
        ) 
        = 
        ζ 
        ( 
        z 
        + 
        w 
        ; 
        Λ 
        ) 
        − 
        ζ 
        ( 
        z 
        ; 
        Λ 
        ) 
        , 
        
          
             for any  
           
         
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle \eta (w;\Lambda )=\zeta (z+w;\Lambda )-\zeta (z;\Lambda ),{\mbox{ for any }}z\in \mathbb {C} } 
   
 w  in the lattice 
  
    
      
        Λ 
       
     
    {\displaystyle \Lambda } 
   
 This is well-defined, i.e. 
  
    
      
        ζ 
        ( 
        z 
        + 
        w 
        ; 
        Λ 
        ) 
        − 
        ζ 
        ( 
        z 
        ; 
        Λ 
        ) 
       
     
    {\displaystyle \zeta (z+w;\Lambda )-\zeta (z;\Lambda )} 
   
 w . The Weierstrass eta function should not be confused with either the Dedekind eta function  or the Dirichlet eta function .
[ edit ] Plot of the p-function  using Domain coloring   The Weierstrass p-function  is related to the zeta function by 
  
    
      
        
          ℘ 
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        = 
        − 
        
          
            ζ 
            ′ 
           
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        , 
        
          
             for any  
           
         
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle \operatorname {\wp } {(z;\Lambda )}=-\operatorname {\zeta '} {(z;\Lambda )},{\mbox{ for any }}z\in \mathbb {C} } 
   
 The Weierstrass ℘-function is an even elliptic function of order N=2 with a double pole at each lattice point and no other poles.
Consider the situation where one period is real, which we can scale to be 
  
    
      
        
          ω 
          
            1 
           
         
        = 
        2 
        π 
       
     
    {\displaystyle \omega _{1}=2\pi } 
   
 
  
    
      
        
          ω 
          
            2 
           
         
        → 
        i 
        ∞ 
       
     
    {\displaystyle \omega _{2}\rightarrow i\infty } 
   
 
  
    
      
        { 
        
          g 
          
            2 
           
         
        , 
        
          g 
          
            3 
           
         
        } 
        = 
        
          { 
          
            
              
                
                  1 
                  12 
                 
               
             
            , 
            
              
                
                  1 
                  216 
                 
               
             
           
          } 
         
       
     
    {\displaystyle \{g_{2},g_{3}\}=\left\{{\tfrac {1}{12}},{\tfrac {1}{216}}\right\}} 
   
 
  
    
      
        Δ 
        = 
        0 
       
     
    {\displaystyle \Delta =0} 
   
 
  
    
      
        
          η 
          
            1 
           
         
        = 
        
          
            
              π 
              12 
             
           
         
       
     
    {\displaystyle \eta _{1}={\tfrac {\pi }{12}}} 
   
 
  
    
      
        
          σ 
         
         
        
          ( 
          z 
          ; 
          Λ 
          ) 
         
        = 
        2 
        
          e 
          
            
              z 
              
                2 
               
             
            
              / 
             
            24 
           
         
        sin 
         
        
          
            ( 
            
              
                
                  z 
                  2 
                 
               
             
            ) 
           
         
       
     
    {\displaystyle \operatorname {\sigma } {(z;\Lambda )}=2e^{z^{2}/24}\sin {\left({\tfrac {z}{2}}\right)}} 
   
 A generalization for other sine-like functions on other doubly-periodic lattices is
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        
          
            π 
            
              ω 
              
                1 
               
             
           
         
        
          e 
          
            − 
            ( 
            4 
            
              η 
              
                1 
               
             
            
              / 
             
            
              ω 
              
                1 
               
             
            ) 
            
              z 
              
                2 
               
             
           
         
        
          σ 
         
         
        
          ( 
          2 
          z 
          ; 
          Λ 
          ) 
         
       
     
    {\displaystyle f(z)={\frac {\pi }{\omega _{1}}}e^{-(4\eta _{1}/\omega _{1})z^{2}}\operatorname {\sigma } {(2z;\Lambda )}} 
   
 
^ Lang, Serge (1987). Elliptic Functions  (Second ed.). New York, NY: Springer New York. pp. 7– 11. ISBN  978-1-4612-9142-8    
This article incorporates material from Weierstrass sigma function on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .