Mathematical identities
The following are important identities  involving derivatives and integrals in vector calculus .
For a function 
  
    
      
        f 
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
       
     
    {\displaystyle f(x,y,z)} 
   
 Cartesian coordinate  variables, the gradient is the vector field:
  
    
      
        grad 
         
        ( 
        f 
        ) 
        = 
        ∇ 
        f 
        = 
        
          
            ( 
            
              
                
                  
                    
                      
                        ∂ 
                        
                          ∂ 
                          x 
                         
                       
                     
                    , 
                      
                    
                      
                        ∂ 
                        
                          ∂ 
                          y 
                         
                       
                     
                    , 
                      
                    
                      
                        ∂ 
                        
                          ∂ 
                          z 
                         
                       
                     
                   
                 
               
             
            ) 
           
         
        f 
        = 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              x 
             
           
         
        
          i 
         
        + 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              y 
             
           
         
        
          j 
         
        + 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              z 
             
           
         
        
          k 
         
       
     
    {\displaystyle \operatorname {grad} (f)=\nabla f={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}f={\frac {\partial f}{\partial x}}\mathbf {i} +{\frac {\partial f}{\partial y}}\mathbf {j} +{\frac {\partial f}{\partial z}}\mathbf {k} } 
   
 i , j , k  are the standard  unit vectors  for the x , y , z -axes. More generally, for a function of n  variables 
  
    
      
        ψ 
        ( 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \psi (x_{1},\ldots ,x_{n})} 
   
 scalar  field, the gradient is the vector field :
  
    
      
        ∇ 
        ψ 
        = 
        
          
            ( 
            
              
                
                  
                    
                      
                        ∂ 
                        
                          ∂ 
                          
                            x 
                            
                              1 
                             
                           
                         
                       
                     
                    , 
                    … 
                    , 
                    
                      
                        ∂ 
                        
                          ∂ 
                          
                            x 
                            
                              n 
                             
                           
                         
                       
                     
                   
                 
               
             
            ) 
           
         
        ψ 
        = 
        
          
            
              ∂ 
              ψ 
             
            
              ∂ 
              
                x 
                
                  1 
                 
               
             
           
         
        
          
            e 
           
          
            1 
           
         
        + 
        ⋯ 
        + 
        
          
            
              ∂ 
              ψ 
             
            
              ∂ 
              
                x 
                
                  n 
                 
               
             
           
         
        
          
            e 
           
          
            n 
           
         
       
     
    {\displaystyle \nabla \psi ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x_{1}}},\ldots ,{\frac {\partial }{\partial x_{n}}}\end{pmatrix}}\psi ={\frac {\partial \psi }{\partial x_{1}}}\mathbf {e} _{1}+\dots +{\frac {\partial \psi }{\partial x_{n}}}\mathbf {e} _{n}} 
   
 
  
    
      
        
          
            e 
           
          
            i 
           
         
        ( 
        i 
        = 
        1 
        , 
        2 
        , 
        . 
        . 
        . 
        , 
        n 
        ) 
       
     
    {\displaystyle \mathbf {e} _{i}\,(i=1,2,...,n)} 
   
 
As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.
For a vector field 
  
    
      
        
          A 
         
        = 
        
          ( 
          
            
              A 
              
                1 
               
             
            , 
            … 
            , 
            
              A 
              
                n 
               
             
           
          ) 
         
       
     
    {\displaystyle \mathbf {A} =\left(A_{1},\ldots ,A_{n}\right)} 
   
 total derivative  is the n × n  Jacobian matrix :[ 1] 
  
    
      
        
          
            J 
           
          
            
              A 
             
           
         
        = 
        d 
        
          A 
         
        = 
        ( 
        ∇ 
        
          A 
         
        
          ) 
          
            
              T 
             
           
         
        = 
        
          
            ( 
            
              
                
                  ∂ 
                  
                    A 
                    
                      i 
                     
                   
                 
                
                  ∂ 
                  
                    x 
                    
                      j 
                     
                   
                 
               
             
            ) 
           
          
            i 
            j 
           
         
        . 
       
     
    {\displaystyle \mathbf {J} _{\mathbf {A} }=d\mathbf {A} =(\nabla \!\mathbf {A} )^{\textsf {T}}=\left({\frac {\partial A_{i}}{\partial x_{j}}}\right)_{\!ij}.} 
   
 
For a tensor field  
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k , the gradient 
  
    
      
        grad 
         
        ( 
        
          T 
         
        ) 
        = 
        d 
        
          T 
         
        = 
        ( 
        ∇ 
        
          T 
         
        
          ) 
          
            
              T 
             
           
         
       
     
    {\displaystyle \operatorname {grad} (\mathbf {T} )=d\mathbf {T} =(\nabla \mathbf {T} )^{\textsf {T}}} 
   
 k  + 1.
For a tensor field 
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k  > 0, the tensor field 
  
    
      
        ∇ 
        
          T 
         
       
     
    {\displaystyle \nabla \mathbf {T} } 
   
 k  + 1 is defined by the recursive relation
  
    
      
        ( 
        ∇ 
        
          T 
         
        ) 
        ⋅ 
        
          C 
         
        = 
        ∇ 
        ( 
        
          T 
         
        ⋅ 
        
          C 
         
        ) 
       
     
    {\displaystyle (\nabla \mathbf {T} )\cdot \mathbf {C} =\nabla (\mathbf {T} \cdot \mathbf {C} )} 
   
 
  
    
      
        
          C 
         
       
     
    {\displaystyle \mathbf {C} } 
   
 
In Cartesian coordinates, the divergence of a continuously differentiable  vector field  
  
    
      
        
          F 
         
        = 
        
          F 
          
            x 
           
         
        
          i 
         
        + 
        
          F 
          
            y 
           
         
        
          j 
         
        + 
        
          F 
          
            z 
           
         
        
          k 
         
       
     
    {\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} } 
   
 
  
    
      
        
          
            
              
                div 
                 
                
                  F 
                 
                = 
                ∇ 
                ⋅ 
                
                  F 
                 
               
              
                = 
                
                  
                    ( 
                    
                      
                        
                          
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  x 
                                 
                               
                             
                           
                          , 
                            
                          
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  y 
                                 
                               
                             
                           
                          , 
                            
                          
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  z 
                                 
                               
                             
                           
                         
                       
                     
                    ) 
                   
                 
                ⋅ 
                
                  
                    ( 
                    
                      
                        
                          
                            F 
                            
                              x 
                             
                           
                          , 
                            
                          
                            F 
                            
                              y 
                             
                           
                          , 
                            
                          
                            F 
                            
                              z 
                             
                           
                         
                       
                     
                    ) 
                   
                 
               
             
            
              
                = 
                
                  
                    
                      ∂ 
                      
                        F 
                        
                          x 
                         
                       
                     
                    
                      ∂ 
                      x 
                     
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        F 
                        
                          y 
                         
                       
                     
                    
                      ∂ 
                      y 
                     
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        F 
                        
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {div} \mathbf {F} =\nabla \cdot \mathbf {F} &={\begin{pmatrix}{\dfrac {\partial }{\partial x}},\ {\dfrac {\partial }{\partial y}},\ {\dfrac {\partial }{\partial z}}\end{pmatrix}}\cdot {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}\\[1ex]&={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}.\end{aligned}}} 
   
 
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The divergence of a tensor field  
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k  is written as 
  
    
      
        div 
         
        ( 
        
          T 
         
        ) 
        = 
        ∇ 
        ⋅ 
        
          T 
         
       
     
    {\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} } 
   
 contraction  of a tensor field of order k  − 1. Specifically, the divergence of a vector is a scalar. The divergence of a higher-order tensor field may be found by decomposing the tensor field into a sum of outer products  and using the identity,
  
    
      
        ∇ 
        ⋅ 
        
          ( 
          
            
              A 
             
            ⊗ 
            
              T 
             
           
          ) 
         
        = 
        
          T 
         
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        + 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          T 
         
       
     
    {\displaystyle \nabla \cdot \left(\mathbf {A} \otimes \mathbf {T} \right)=\mathbf {T} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {T} } 
   
 
  
    
      
        
          A 
         
        ⋅ 
        ∇ 
       
     
    {\displaystyle \mathbf {A} \cdot \nabla } 
   
 directional derivative  in the direction of 
  
    
      
        
          A 
         
       
     
    {\displaystyle \mathbf {A} } 
   
 [ 2] 
  
    
      
        ∇ 
        ⋅ 
        
          ( 
          
            
              A 
             
            
              
                B 
               
              
                
                  T 
                 
               
             
           
          ) 
         
        = 
        
          B 
         
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        + 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
        . 
       
     
    {\displaystyle \nabla \cdot \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=\mathbf {B} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {B} .} 
   
 
For a tensor field 
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k  > 1, the tensor field 
  
    
      
        ∇ 
        ⋅ 
        
          T 
         
       
     
    {\displaystyle \nabla \cdot \mathbf {T} } 
   
 k  − 1 is defined by the recursive relation
  
    
      
        ( 
        ∇ 
        ⋅ 
        
          T 
         
        ) 
        ⋅ 
        
          C 
         
        = 
        ∇ 
        ⋅ 
        ( 
        
          T 
         
        ⋅ 
        
          C 
         
        ) 
       
     
    {\displaystyle (\nabla \cdot \mathbf {T} )\cdot \mathbf {C} =\nabla \cdot (\mathbf {T} \cdot \mathbf {C} )} 
   
 
  
    
      
        
          C 
         
       
     
    {\displaystyle \mathbf {C} } 
   
 
In Cartesian coordinates, for 
  
    
      
        
          F 
         
        = 
        
          F 
          
            x 
           
         
        
          i 
         
        + 
        
          F 
          
            y 
           
         
        
          j 
         
        + 
        
          F 
          
            z 
           
         
        
          k 
         
       
     
    {\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} } 
   
 
  
    
      
        
          
            
              
                curl 
                 
                
                  F 
                 
               
              
                = 
                ∇ 
                × 
                
                  F 
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  x 
                                 
                               
                             
                            , 
                              
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  y 
                                 
                               
                             
                            , 
                              
                            
                              
                                ∂ 
                                
                                  ∂ 
                                  z 
                                 
                               
                             
                           
                         
                       
                     
                    ) 
                   
                 
                × 
                
                  
                    ( 
                    
                      
                        
                          
                            F 
                            
                              x 
                             
                           
                          , 
                            
                          
                            F 
                            
                              y 
                             
                           
                          , 
                            
                          
                            F 
                            
                              z 
                             
                           
                         
                       
                     
                    ) 
                   
                 
               
             
            
              
                = 
                
                  
                    | 
                    
                      
                        
                          
                            i 
                           
                         
                        
                          
                            j 
                           
                         
                        
                          
                            k 
                           
                         
                       
                      
                        
                          
                            
                              ∂ 
                              
                                ∂ 
                                x 
                               
                             
                           
                         
                        
                          
                            
                              ∂ 
                              
                                ∂ 
                                y 
                               
                             
                           
                         
                        
                          
                            
                              ∂ 
                              
                                ∂ 
                                z 
                               
                             
                           
                         
                       
                      
                        
                          
                            F 
                            
                              x 
                             
                           
                         
                        
                          
                            F 
                            
                              y 
                             
                           
                         
                        
                          
                            F 
                            
                              z 
                             
                           
                         
                       
                     
                    | 
                   
                 
               
             
            
              
                = 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              z 
                             
                           
                         
                        
                          ∂ 
                          y 
                         
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              y 
                             
                           
                         
                        
                          ∂ 
                          z 
                         
                       
                     
                   
                  ) 
                 
                
                  i 
                 
                + 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              x 
                             
                           
                         
                        
                          ∂ 
                          z 
                         
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              z 
                             
                           
                         
                        
                          ∂ 
                          x 
                         
                       
                     
                   
                  ) 
                 
                
                  j 
                 
                + 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              y 
                             
                           
                         
                        
                          ∂ 
                          x 
                         
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            F 
                            
                              x 
                             
                           
                         
                        
                          ∂ 
                          y 
                         
                       
                     
                   
                  ) 
                 
                
                  k 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {curl} \mathbf {F} &=\nabla \times \mathbf {F} ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}\\[1em]&={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{vmatrix}}\\[1em]&=\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)\mathbf {k} \end{aligned}}} 
   
 i , j , and k  are the unit vectors  for the x -, y -, and z -axes, respectively.
As the name implies the curl is a measure of how much nearby vectors tend in a circular direction.
In Einstein notation , the vector field 
  
    
      
        
          F 
         
        = 
        
          
            ( 
            
              
                
                  
                    F 
                    
                      1 
                     
                   
                  , 
                    
                  
                    F 
                    
                      2 
                     
                   
                  , 
                    
                  
                    F 
                    
                      3 
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\displaystyle \mathbf {F} ={\begin{pmatrix}F_{1},\ F_{2},\ F_{3}\end{pmatrix}}} 
   
 
  
    
      
        ∇ 
        × 
        
          F 
         
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
        
          
            e 
           
          
            i 
           
         
        
          
            
              ∂ 
              
                F 
                
                  k 
                 
               
             
            
              ∂ 
              
                x 
                
                  j 
                 
               
             
           
         
       
     
    {\displaystyle \nabla \times \mathbf {F} =\varepsilon ^{ijk}\mathbf {e} _{i}{\frac {\partial F_{k}}{\partial x_{j}}}} 
   
 
  
    
      
        ε 
       
     
    {\displaystyle \varepsilon } 
   
 Levi-Civita parity symbol .
For a tensor field 
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k  > 1, the tensor field 
  
    
      
        ∇ 
        × 
        
          T 
         
       
     
    {\displaystyle \nabla \times \mathbf {T} } 
   
 k  is defined by the recursive relation
  
    
      
        ( 
        ∇ 
        × 
        
          T 
         
        ) 
        ⋅ 
        
          C 
         
        = 
        ∇ 
        × 
        ( 
        
          T 
         
        ⋅ 
        
          C 
         
        ) 
       
     
    {\displaystyle (\nabla \times \mathbf {T} )\cdot \mathbf {C} =\nabla \times (\mathbf {T} \cdot \mathbf {C} )} 
   
 
  
    
      
        
          C 
         
       
     
    {\displaystyle \mathbf {C} } 
   
 
A tensor field of order greater than one may be decomposed into a sum of outer products , and then the following identity may be used:
  
    
      
        ∇ 
        × 
        
          ( 
          
            
              A 
             
            ⊗ 
            
              T 
             
           
          ) 
         
        = 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        ⊗ 
        
          T 
         
        − 
        
          A 
         
        × 
        ( 
        ∇ 
        
          T 
         
        ) 
        . 
       
     
    {\displaystyle \nabla \times \left(\mathbf {A} \otimes \mathbf {T} \right)=(\nabla \times \mathbf {A} )\otimes \mathbf {T} -\mathbf {A} \times (\nabla \mathbf {T} ).} 
   
 [ 3] 
  
    
      
        ∇ 
        × 
        
          ( 
          
            
              A 
             
            
              
                B 
               
              
                
                  T 
                 
               
             
           
          ) 
         
        = 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        
          
            B 
           
          
            
              T 
             
           
         
        − 
        
          A 
         
        × 
        ( 
        ∇ 
        
          B 
         
        ) 
        . 
       
     
    {\displaystyle \nabla \times \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=(\nabla \times \mathbf {A} )\mathbf {B} ^{\textsf {T}}-\mathbf {A} \times (\nabla \mathbf {B} ).} 
   
 
In Cartesian coordinates , the Laplacian of a function 
  
    
      
        f 
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
       
     
    {\displaystyle f(x,y,z)} 
   
 
  
    
      
        Δ 
        f 
        = 
        
          ∇ 
          
            2 
           
         
        f 
        = 
        ( 
        ∇ 
        ⋅ 
        ∇ 
        ) 
        f 
        = 
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                x 
                
                  2 
                 
               
             
           
         
        + 
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                y 
                
                  2 
                 
               
             
           
         
        + 
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                z 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \Delta f=\nabla ^{2}\!f=(\nabla \cdot \nabla )f={\frac {\partial ^{2}\!f}{\partial x^{2}}}+{\frac {\partial ^{2}\!f}{\partial y^{2}}}+{\frac {\partial ^{2}\!f}{\partial z^{2}}}.} 
   
 
The Laplacian is a measure of how much a function is changing over a small sphere centered at the point.
When the Laplacian is equal to 0, the function is called a harmonic function . That is,
  
    
      
        Δ 
        f 
        = 
        0. 
       
     
    {\displaystyle \Delta f=0.} 
   
 
For a tensor field , 
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 
  
    
      
        Δ 
        
          T 
         
        = 
        
          ∇ 
          
            2 
           
         
        
          T 
         
        = 
        ( 
        ∇ 
        ⋅ 
        ∇ 
        ) 
        
          T 
         
       
     
    {\displaystyle \Delta \mathbf {T} =\nabla ^{2}\mathbf {T} =(\nabla \cdot \nabla )\mathbf {T} } 
   
 
For a tensor field 
  
    
      
        
          T 
         
       
     
    {\displaystyle \mathbf {T} } 
   
 k  > 0, the tensor field 
  
    
      
        
          ∇ 
          
            2 
           
         
        
          T 
         
       
     
    {\displaystyle \nabla ^{2}\mathbf {T} } 
   
 k  is defined by the recursive relation
  
    
      
        
          ( 
          
            
              ∇ 
              
                2 
               
             
            
              T 
             
           
          ) 
         
        ⋅ 
        
          C 
         
        = 
        
          ∇ 
          
            2 
           
         
        ( 
        
          T 
         
        ⋅ 
        
          C 
         
        ) 
       
     
    {\displaystyle \left(\nabla ^{2}\mathbf {T} \right)\cdot \mathbf {C} =\nabla ^{2}(\mathbf {T} \cdot \mathbf {C} )} 
   
 
  
    
      
        
          C 
         
       
     
    {\displaystyle \mathbf {C} } 
   
 
In Feynman subscript notation ,
  
    
      
        
          ∇ 
          
            
              B 
             
           
         
        
          ( 
          
            A 
            
              ⋅ 
             
            B 
           
          ) 
         
        = 
        
          A 
         
        
          × 
         
        
          ( 
          
            ∇ 
            
              × 
             
            
              B 
             
           
          ) 
         
        + 
        
          ( 
          
            
              A 
             
            
              ⋅ 
             
            ∇ 
           
          ) 
         
        
          B 
         
       
     
    {\displaystyle \nabla _{\mathbf {B} }\!\left(\mathbf {A{\cdot }B} \right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} } 
   
 B B .[ 4] [ 5] [ 6] 
More general but similar is the Hestenes  overdot notation  in geometric algebra .[ 7] [ 8] 
  
    
      
        
          
            
              ∇ 
              ˙ 
             
           
         
        
          ( 
          
            
              A 
             
            
              ⋅ 
             
            
              
                
                  
                    B 
                   
                  ˙ 
                 
               
             
           
          ) 
         
        = 
        
          A 
         
        
          × 
         
        
          ( 
          
            ∇ 
            
              × 
             
            
              B 
             
           
          ) 
         
        + 
        
          ( 
          
            
              A 
             
            
              ⋅ 
             
            ∇ 
           
          ) 
         
        
          B 
         
       
     
    {\displaystyle {\dot {\nabla }}\left(\mathbf {A} {\cdot }{\dot {\mathbf {B} }}\right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} } 
   
 B , is differentiated, while the (undotted) A  is held constant.
The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅(A ×B ) = (C ×A )⋅B :
  
    
      
        
          
            
              
                ∇ 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
              
                = 
                
                  ∇ 
                  
                    
                      A 
                     
                   
                 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
                + 
                
                  ∇ 
                  
                    
                      B 
                     
                   
                 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ( 
                
                  ∇ 
                  
                    
                      A 
                     
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                + 
                ( 
                
                  ∇ 
                  
                    
                      B 
                     
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
               
             
            
              
                = 
                ( 
                
                  ∇ 
                  
                    
                      A 
                     
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                ( 
                
                  A 
                 
                × 
                
                  ∇ 
                  
                    
                      B 
                     
                   
                 
                ) 
                ⋅ 
                
                  B 
                 
               
             
            
              
                = 
                ( 
                
                  ∇ 
                  
                    
                      A 
                     
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                
                  ∇ 
                  
                    
                      B 
                     
                   
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ( 
                ∇ 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {A} \times \mathbf {B} )&=\nabla _{\mathbf {A} }\cdot (\mathbf {A} \times \mathbf {B} )+\nabla _{\mathbf {B} }\cdot (\mathbf {A} \times \mathbf {B} )\\[2pt]&=(\nabla _{\mathbf {A} }\times \mathbf {A} )\cdot \mathbf {B} +(\nabla _{\mathbf {B} }\times \mathbf {A} )\cdot \mathbf {B} \\[2pt]&=(\nabla _{\mathbf {A} }\times \mathbf {A} )\cdot \mathbf {B} -(\mathbf {A} \times \nabla _{\mathbf {B} })\cdot \mathbf {B} \\[2pt]&=(\nabla _{\mathbf {A} }\times \mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\nabla _{\mathbf {B} }\times \mathbf {B} )\\[2pt]&=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\nabla \times \mathbf {B} )\end{aligned}}} 
   
 
An alternative method is to use the Cartesian components of the del operator as follows (with implicit summation  over the index i ):
  
    
      
        
          
            
              
                ∇ 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
              
                = 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                
                  ∂ 
                  
                    i 
                   
                 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                
                  ∂ 
                  
                    i 
                   
                 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                ( 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  A 
                 
                × 
                
                  B 
                 
                + 
                
                  A 
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                ( 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
                + 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                + 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  B 
                 
               
             
            
              
                = 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                ( 
                
                  A 
                 
                × 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ) 
                ⋅ 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  B 
                 
               
             
            
              
                = 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                × 
                
                  ∂ 
                  
                    i 
                   
                 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                
                  ∂ 
                  
                    i 
                   
                 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                
                  ∂ 
                  
                    i 
                   
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ( 
                ∇ 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {A} \times \mathbf {B} )&=\mathbf {e} _{i}\partial _{i}\cdot (\mathbf {A} \times \mathbf {B} )\\[2pt]&=\mathbf {e} _{i}\cdot \partial _{i}(\mathbf {A} \times \mathbf {B} )\\[2pt]&=\mathbf {e} _{i}\cdot (\partial _{i}\mathbf {A} \times \mathbf {B} +\mathbf {A} \times \partial _{i}\mathbf {B} )\\[2pt]&=\mathbf {e} _{i}\cdot (\partial _{i}\mathbf {A} \times \mathbf {B} )+\mathbf {e} _{i}\cdot (\mathbf {A} \times \partial _{i}\mathbf {B} )\\[2pt]&=(\mathbf {e} _{i}\times \partial _{i}\mathbf {A} )\cdot \mathbf {B} +(\mathbf {e} _{i}\times \mathbf {A} )\cdot \partial _{i}\mathbf {B} \\[2pt]&=(\mathbf {e} _{i}\times \partial _{i}\mathbf {A} )\cdot \mathbf {B} -(\mathbf {A} \times \mathbf {e} _{i})\cdot \partial _{i}\mathbf {B} \\[2pt]&=(\mathbf {e} _{i}\times \partial _{i}\mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\mathbf {e} _{i}\times \partial _{i}\mathbf {B} )\\[2pt]&=(\mathbf {e} _{i}\partial _{i}\times \mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\mathbf {e} _{i}\partial _{i}\times \mathbf {B} )\\[2pt]&=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\nabla \times \mathbf {B} )\end{aligned}}} 
   
 
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term (i.e., the operators must be nested). The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule.
For example, from the identity A ⋅(B ×C ) = (A ×B )⋅C 
we may derive A ⋅(∇×C ) = (A ×∇)⋅C  but not ∇⋅(B ×C ) = (∇×B )⋅C ,
nor from A ⋅(B ×A ) = 0 may we derive A ⋅(∇×A ) = 0.
On the other hand, a subscripted del operates on all occurrences of the subscript in the term, so that A ⋅(∇A A ) = ∇A A ×A ) = ∇⋅(A ×A ) = 0.
Also, from A ×(A ×C ) = A (A ⋅C ) − (A ⋅A )C  we may derive ∇×(∇×C ) = ∇(∇⋅C ) − ∇2 C ,
but from (A ψ )⋅(A φ ) = (A ⋅A )(ψφ ) we may not derive (∇ψ )⋅(∇φ ) = ∇2 (ψφ ).
A subscript c  on a quantity indicates that it is temporarily considered to be a constant. Since a constant is not a variable, when the substitution rule (see the preceding paragraph) is used it, unlike a variable, may be moved into or out of the scope of a del operator, as in the following example:[ 9] 
  
    
      
        
          
            
              
                ∇ 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
              
                = 
                ∇ 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  
                    B 
                   
                  
                    
                      c 
                     
                   
                 
                ) 
                + 
                ∇ 
                ⋅ 
                ( 
                
                  
                    A 
                   
                  
                    
                      c 
                     
                   
                 
                × 
                
                  B 
                 
                ) 
               
             
            
              
                = 
                ∇ 
                ⋅ 
                ( 
                
                  A 
                 
                × 
                
                  
                    B 
                   
                  
                    
                      c 
                     
                   
                 
                ) 
                − 
                ∇ 
                ⋅ 
                ( 
                
                  B 
                 
                × 
                
                  
                    A 
                   
                  
                    
                      c 
                     
                   
                 
                ) 
               
             
            
              
                = 
                ( 
                ∇ 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  
                    B 
                   
                  
                    
                      c 
                     
                   
                 
                − 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
                ⋅ 
                
                  
                    A 
                   
                  
                    
                      c 
                     
                   
                 
               
             
            
              
                = 
                ( 
                ∇ 
                × 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
                − 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
                ⋅ 
                
                  A 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {A} \times \mathbf {B} )&=\nabla \cdot (\mathbf {A} \times \mathbf {B} _{\mathrm {c} })+\nabla \cdot (\mathbf {A} _{\mathrm {c} }\times \mathbf {B} )\\[2pt]&=\nabla \cdot (\mathbf {A} \times \mathbf {B} _{\mathrm {c} })-\nabla \cdot (\mathbf {B} \times \mathbf {A} _{\mathrm {c} })\\[2pt]&=(\nabla \times \mathbf {A} )\cdot \mathbf {B} _{\mathrm {c} }-(\nabla \times \mathbf {B} )\cdot \mathbf {A} _{\mathrm {c} }\\[2pt]&=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -(\nabla \times \mathbf {B} )\cdot \mathbf {A} \end{aligned}}} 
   
 
Another way to indicate that a quantity is a constant is to affix it as a subscript to the scope of a del operator, as follows:[ 10] 
  
    
      
        ∇ 
        
          
            ( 
            
              A 
              
                ⋅ 
               
              B 
             
            ) 
           
          
            
              A 
             
           
         
        = 
        
          A 
         
        
          × 
         
        
          ( 
          
            ∇ 
            
              × 
             
            
              B 
             
           
          ) 
         
        + 
        
          ( 
          
            
              A 
             
            
              ⋅ 
             
            ∇ 
           
          ) 
         
        
          B 
         
       
     
    {\displaystyle \nabla \left(\mathbf {A{\cdot }B} \right)_{\mathbf {A} }=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} } 
   
 
For the remainder of this article, Feynman subscript notation will be used where appropriate.
First derivative identities [ edit ] For scalar fields 
  
    
      
        ψ 
       
     
    {\displaystyle \psi } 
   
 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle \mathbf {A} } 
   
 
  
    
      
        
          B 
         
       
     
    {\displaystyle \mathbf {B} } 
   
 
Distributive properties [ edit ] 
  
    
      
        ∇ 
        ( 
        ψ 
        + 
        ϕ 
        ) 
        = 
        ∇ 
        ψ 
        + 
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi } 
   
 
  
    
      
        ∇ 
        ( 
        
          A 
         
        + 
        
          B 
         
        ) 
        = 
        ∇ 
        
          A 
         
        + 
        ∇ 
        
          B 
         
       
     
    {\displaystyle \nabla (\mathbf {A} +\mathbf {B} )=\nabla \mathbf {A} +\nabla \mathbf {B} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        
          A 
         
        + 
        
          B 
         
        ) 
        = 
        ∇ 
        ⋅ 
        
          A 
         
        + 
        ∇ 
        ⋅ 
        
          B 
         
       
     
    {\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} } 
   
 
  
    
      
        ∇ 
        × 
        ( 
        
          A 
         
        + 
        
          B 
         
        ) 
        = 
        ∇ 
        × 
        
          A 
         
        + 
        ∇ 
        × 
        
          B 
         
       
     
    {\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} } 
   
 First derivative associative properties [ edit ] 
  
    
      
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        ψ 
        = 
        
          A 
         
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
       
     
    {\displaystyle (\mathbf {A} \cdot \nabla )\psi =\mathbf {A} \cdot (\nabla \psi )} 
   
 
  
    
      
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
        = 
        
          A 
         
        ⋅ 
        ( 
        ∇ 
        
          B 
         
        ) 
       
     
    {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {B} =\mathbf {A} \cdot (\nabla \mathbf {B} )} 
   
 
  
    
      
        ( 
        
          A 
         
        × 
        ∇ 
        ) 
        ψ 
        = 
        
          A 
         
        × 
        ( 
        ∇ 
        ψ 
        ) 
       
     
    {\displaystyle (\mathbf {A} \times \nabla )\psi =\mathbf {A} \times (\nabla \psi )} 
   
 
  
    
      
        ( 
        
          A 
         
        × 
        ∇ 
        ) 
        
          B 
         
        = 
        
          A 
         
        × 
        ( 
        ∇ 
        
          B 
         
        ) 
       
     
    {\displaystyle (\mathbf {A} \times \nabla )\mathbf {B} =\mathbf {A} \times (\nabla \mathbf {B} )} 
   
 Product rule for multiplication by a scalar [ edit ] We have the following generalizations of the product rule  in single-variable calculus .
  
    
      
        ∇ 
        ( 
        ψ 
        ϕ 
        ) 
        = 
        ϕ 
        ∇ 
        ψ 
        + 
        ψ 
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla (\psi \phi )=\phi \,\nabla \psi +\psi \,\nabla \phi } 
   
 
  
    
      
        
          
            
              
                ∇ 
                ( 
                ψ 
                
                  A 
                 
                ) 
               
              
                = 
                ( 
                ∇ 
                ψ 
                ) 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                + 
                ψ 
                ∇ 
                
                  A 
                 
               
             
            
              
                = 
                ∇ 
                ψ 
                ⊗ 
                
                  A 
                 
                + 
                ψ 
                ∇ 
                
                  A 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla (\psi \mathbf {A} )&=(\nabla \psi )\mathbf {A} ^{\textsf {T}}+\psi \nabla \mathbf {A} \\&=\nabla \psi \otimes \mathbf {A} +\psi \,\nabla \mathbf {A} \end{aligned}}} 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        ψ 
        
          A 
         
        ) 
        = 
        ψ 
        ∇ 
        
          ⋅ 
         
        
          A 
         
        + 
        ( 
        ∇ 
        ψ 
        ) 
        
          ⋅ 
         
        
          A 
         
       
     
    {\displaystyle \nabla \cdot (\psi \mathbf {A} )=\psi \,\nabla {\cdot }\mathbf {A} +(\nabla \psi )\,{\cdot }\mathbf {A} } 
   
 
  
    
      
        ∇ 
        
          × 
         
        ( 
        ψ 
        
          A 
         
        ) 
        = 
        ψ 
        ∇ 
        
          × 
         
        
          A 
         
        + 
        ( 
        ∇ 
        ψ 
        ) 
        
          × 
         
        
          A 
         
       
     
    {\displaystyle \nabla {\times }(\psi \mathbf {A} )=\psi \,\nabla {\times }\mathbf {A} +(\nabla \psi ){\times }\mathbf {A} } 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ψ 
        ϕ 
        ) 
        = 
        ψ 
        
          ∇ 
          
            2 
             
         
        ϕ 
        + 
        2 
        ∇ 
        ψ 
        ⋅ 
        ∇ 
        ϕ 
        + 
        ϕ 
        
          ∇ 
          
            2 
             
         
        ψ 
       
     
    {\displaystyle \nabla ^{2}(\psi \phi )=\psi \,\nabla ^{2\!}\phi +2\,\nabla \!\psi \cdot \!\nabla \phi +\phi \,\nabla ^{2\!}\psi } 
   
 Quotient rule for division by a scalar [ edit ] 
  
    
      
        ∇ 
        
          ( 
          
            
              ψ 
              ϕ 
             
           
          ) 
         
        = 
        
          
            
              ϕ 
              ∇ 
              ψ 
              − 
              ψ 
              ∇ 
              ϕ 
             
            
              ϕ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \nabla \left({\frac {\psi }{\phi }}\right)={\frac {\phi \,\nabla \psi -\psi \,\nabla \phi }{\phi ^{2}}}} 
   
 
  
    
      
        ∇ 
        
          ( 
          
            
              
                A 
               
              ϕ 
             
           
          ) 
         
        = 
        
          
            
              ϕ 
              ∇ 
              
                A 
               
              − 
              ∇ 
              ϕ 
              ⊗ 
              
                A 
               
             
            
              ϕ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \nabla \left({\frac {\mathbf {A} }{\phi }}\right)={\frac {\phi \,\nabla \mathbf {A} -\nabla \phi \otimes \mathbf {A} }{\phi ^{2}}}} 
   
 
  
    
      
        ∇ 
        ⋅ 
        
          ( 
          
            
              
                A 
               
              ϕ 
             
           
          ) 
         
        = 
        
          
            
              ϕ 
              ∇ 
              
                ⋅ 
               
              
                A 
               
              − 
              ∇ 
              ϕ 
              ⋅ 
              
                A 
               
             
            
              ϕ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \nabla \cdot \left({\frac {\mathbf {A} }{\phi }}\right)={\frac {\phi \,\nabla {\cdot }\mathbf {A} -\nabla \!\phi \cdot \mathbf {A} }{\phi ^{2}}}} 
   
 
  
    
      
        ∇ 
        × 
        
          ( 
          
            
              
                A 
               
              ϕ 
             
           
          ) 
         
        = 
        
          
            
              ϕ 
              ∇ 
              
                × 
               
              
                A 
               
              − 
              ∇ 
              ϕ 
              
                × 
               
              
                A 
               
             
            
              ϕ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \nabla \times \left({\frac {\mathbf {A} }{\phi }}\right)={\frac {\phi \,\nabla {\times }\mathbf {A} -\nabla \!\phi \,{\times }\,\mathbf {A} }{\phi ^{2}}}} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        
          ( 
          
            
              ψ 
              ϕ 
             
           
          ) 
         
        = 
        
          
            
              ϕ 
              
                ∇ 
                
                  2 
                   
               
              ψ 
              − 
              2 
              ϕ 
              ∇ 
              
                ( 
                
                  
                    ψ 
                    ϕ 
                   
                 
                ) 
               
              ⋅ 
              ∇ 
              ϕ 
              − 
              ψ 
              
                ∇ 
                
                  2 
                   
               
              ϕ 
             
            
              ϕ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \nabla ^{2}\left({\frac {\psi }{\phi }}\right)={\frac {\phi \,\nabla ^{2\!}\psi -2\,\phi \,\nabla \!\left({\frac {\psi }{\phi }}\right)\cdot \!\nabla \phi -\psi \,\nabla ^{2\!}\phi }{\phi ^{2}}}} 
   
 Let 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 
  
    
      
        
          r 
         
        ( 
        t 
        ) 
        = 
        ( 
        
          x 
          
            1 
           
         
        ( 
        t 
        ) 
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        ( 
        t 
        ) 
        ) 
       
     
    {\displaystyle \mathbf {r} (t)=(x_{1}(t),\ldots ,x_{n}(t))} 
   
 parametrized  curve, 
  
    
      
        ϕ 
        : 
        
          
            R 
           
          
            n 
           
         
        → 
        
          R 
         
       
     
    {\displaystyle \phi \!:\mathbb {R} ^{n}\to \mathbb {R} } 
   
 
  
    
      
        
          A 
         
        : 
        
          
            R 
           
          
            n 
           
         
        → 
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \mathbf {A} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} 
   
 chain rule .
  
    
      
        ∇ 
        ( 
        f 
        ∘ 
        ϕ 
        ) 
        = 
        
          ( 
          
            
              f 
              ′ 
             
            ∘ 
            ϕ 
           
          ) 
         
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla (f\circ \phi )=\left(f'\circ \phi \right)\nabla \phi } 
   
 
  
    
      
        ( 
        
          r 
         
        ∘ 
        f 
        
          ) 
          ′ 
         
        = 
        ( 
        
          
            r 
           
          ′ 
         
        ∘ 
        f 
        ) 
        
          f 
          ′ 
         
       
     
    {\displaystyle (\mathbf {r} \circ f)'=(\mathbf {r} '\circ f)f'} 
   
 
  
    
      
        ( 
        ϕ 
        ∘ 
        
          r 
         
        
          ) 
          ′ 
         
        = 
        ( 
        ∇ 
        ϕ 
        ∘ 
        
          r 
         
        ) 
        ⋅ 
        
          
            r 
           
          ′ 
         
       
     
    {\displaystyle (\phi \circ \mathbf {r} )'=(\nabla \phi \circ \mathbf {r} )\cdot \mathbf {r} '} 
   
 
  
    
      
        ( 
        
          A 
         
        ∘ 
        
          r 
         
        
          ) 
          ′ 
         
        = 
        
          
            r 
           
          ′ 
         
        ⋅ 
        ( 
        ∇ 
        
          A 
         
        ∘ 
        
          r 
         
        ) 
       
     
    {\displaystyle (\mathbf {A} \circ \mathbf {r} )'=\mathbf {r} '\cdot (\nabla \mathbf {A} \circ \mathbf {r} )} 
   
 
  
    
      
        ∇ 
        ( 
        ϕ 
        ∘ 
        
          A 
         
        ) 
        = 
        ( 
        ∇ 
        
          A 
         
        ) 
        ⋅ 
        ( 
        ∇ 
        ϕ 
        ∘ 
        
          A 
         
        ) 
       
     
    {\displaystyle \nabla (\phi \circ \mathbf {A} )=(\nabla \mathbf {A} )\cdot (\nabla \phi \circ \mathbf {A} )} 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        
          r 
         
        ∘ 
        ϕ 
        ) 
        = 
        ∇ 
        ϕ 
        ⋅ 
        ( 
        
          
            r 
           
          ′ 
         
        ∘ 
        ϕ 
        ) 
       
     
    {\displaystyle \nabla \cdot (\mathbf {r} \circ \phi )=\nabla \phi \cdot (\mathbf {r} '\circ \phi )} 
   
 
  
    
      
        ∇ 
        × 
        ( 
        
          r 
         
        ∘ 
        ϕ 
        ) 
        = 
        ∇ 
        ϕ 
        × 
        ( 
        
          
            r 
           
          ′ 
         
        ∘ 
        ϕ 
        ) 
       
     
    {\displaystyle \nabla \times (\mathbf {r} \circ \phi )=\nabla \phi \times (\mathbf {r} '\circ \phi )} 
   
 For a vector transformation 
  
    
      
        
          x 
         
        : 
        
          
            R 
           
          
            n 
           
         
        → 
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \mathbf {x} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        
          A 
         
        ∘ 
        
          x 
         
        ) 
        = 
        
          t 
          r 
         
        
          ( 
          
            ( 
            ∇ 
            
              x 
             
            ) 
            ⋅ 
            ( 
            ∇ 
            
              A 
             
            ∘ 
            
              x 
             
            ) 
           
          ) 
         
       
     
    {\displaystyle \nabla \cdot (\mathbf {A} \circ \mathbf {x} )=\mathrm {tr} \left((\nabla \mathbf {x} )\cdot (\nabla \mathbf {A} \circ \mathbf {x} )\right)} 
   
 
Here we take the trace  of the dot product of two second-order tensors, which corresponds to the product of their matrices.
  
    
      
        
          
            
              
                ∇ 
                ( 
                
                  A 
                 
                ⋅ 
                
                  B 
                 
                ) 
               
              
                  
                = 
                  
                ( 
                
                  A 
                 
                ⋅ 
                ∇ 
                ) 
                
                  B 
                 
                + 
                ( 
                
                  B 
                 
                ⋅ 
                ∇ 
                ) 
                
                  A 
                 
                + 
                
                  A 
                 
                
                  × 
                 
                ( 
                ∇ 
                
                  × 
                 
                
                  B 
                 
                ) 
                + 
                
                  B 
                 
                
                  × 
                 
                ( 
                ∇ 
                
                  × 
                 
                
                  A 
                 
                ) 
               
             
            
              
                  
                = 
                  
                
                  A 
                 
                ⋅ 
                
                  
                    J 
                   
                  
                    
                      B 
                     
                   
                 
                + 
                
                  B 
                 
                ⋅ 
                
                  
                    J 
                   
                  
                    
                      A 
                     
                   
                 
                  
                = 
                  
                ( 
                ∇ 
                
                  B 
                 
                ) 
                ⋅ 
                
                  A 
                 
                + 
                ( 
                ∇ 
                
                  A 
                 
                ) 
                ⋅ 
                
                  B 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla (\mathbf {A} \cdot \mathbf {B} )&\ =\ (\mathbf {A} \cdot \nabla )\mathbf {B} \,+\,(\mathbf {B} \cdot \nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {B} )\,+\,\mathbf {B} {\times }(\nabla {\times }\mathbf {A} )\\&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }+\mathbf {B} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,+\,(\nabla \mathbf {A} )\cdot \mathbf {B} \end{aligned}}} 
   
 
where 
  
    
      
        
          
            J 
           
          
            
              A 
             
           
         
        = 
        ( 
        ∇ 
        
          A 
         
        
          ) 
          
            
              T 
             
           
         
        = 
        ( 
        ∂ 
        
          A 
          
            i 
           
         
        
          / 
         
        ∂ 
        
          x 
          
            j 
           
         
        
          ) 
          
            i 
            j 
           
         
       
     
    {\displaystyle \mathbf {J} _{\mathbf {A} }=(\nabla \!\mathbf {A} )^{\textsf {T}}=(\partial A_{i}/\partial x_{j})_{ij}} 
   
 Jacobian matrix  of the vector field 
  
    
      
        
          A 
         
        = 
        ( 
        
          A 
          
            1 
           
         
        , 
        … 
        , 
        
          A 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \mathbf {A} =(A_{1},\ldots ,A_{n})} 
   
 
Alternatively, using Feynman subscript notation,
  
    
      
        ∇ 
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
        = 
        
          ∇ 
          
            
              A 
             
           
         
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
        + 
        
          ∇ 
          
            
              B 
             
           
         
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
          
        . 
       
     
    {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=\nabla _{\mathbf {A} }(\mathbf {A} \cdot \mathbf {B} )+\nabla _{\mathbf {B} }(\mathbf {A} \cdot \mathbf {B} )\ .} 
   
 
See these notes.[ 11] 
As a special case, when A  = B 
  
    
      
        
          
            
              1 
              2 
             
           
         
        ∇ 
        
          ( 
          
            
              A 
             
            ⋅ 
            
              A 
             
           
          ) 
         
          
        = 
          
        
          A 
         
        ⋅ 
        
          
            J 
           
          
            
              A 
             
           
         
          
        = 
          
        ( 
        ∇ 
        
          A 
         
        ) 
        ⋅ 
        
          A 
         
          
        = 
          
        ( 
        
          A 
         
        
          ⋅ 
         
        ∇ 
        ) 
        
          A 
         
        + 
        
          A 
         
        
          × 
         
        ( 
        ∇ 
        
          × 
         
        
          A 
         
        ) 
          
        = 
          
        A 
        ∇ 
        A 
        . 
       
     
    {\displaystyle {\tfrac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {A} )\cdot \mathbf {A} \ =\ (\mathbf {A} {\cdot }\nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {A} )\ =\ A\nabla A.} 
   
 
The generalization of the dot product  formula to Riemannian manifolds  is a defining property of a Riemannian connection , which differentiates a vector field to give a vector-valued 1-form .
  
    
      
        ∇ 
        ( 
        
          A 
         
        × 
        
          B 
         
        ) 
          
        = 
          
        ( 
        ∇ 
        
          A 
         
        ) 
        × 
        
          B 
         
        − 
        ( 
        ∇ 
        
          B 
         
        ) 
        × 
        
          A 
         
       
     
    {\displaystyle \nabla (\mathbf {A} \times \mathbf {B} )\ =\ (\nabla \mathbf {A} )\times \mathbf {B} \,-\,(\nabla \mathbf {B} )\times \mathbf {A} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        
          A 
         
        × 
        
          B 
         
        ) 
          
        = 
          
        ( 
        ∇ 
        
          × 
         
        
          A 
         
        ) 
        ⋅ 
        
          B 
         
        − 
        
          A 
         
        ⋅ 
        ( 
        ∇ 
        
          × 
         
        
          B 
         
        ) 
       
     
    {\displaystyle \nabla \cdot (\mathbf {A} \times \mathbf {B} )\ =\ (\nabla {\times }\mathbf {A} )\cdot \mathbf {B} \,-\,\mathbf {A} \cdot (\nabla {\times }\mathbf {B} )} 
   
 
  
    
      
        
          
            
              
                ∇ 
                × 
                ( 
                
                  A 
                 
                × 
                
                  B 
                 
                ) 
               
              
                  
                = 
                  
                
                  A 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  B 
                 
                ) 
                − 
                
                  B 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  A 
                 
                ) 
                + 
                ( 
                
                  B 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  A 
                 
                − 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  B 
                 
               
             
            
              
                  
                = 
                  
                
                  A 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  B 
                 
                ) 
                + 
                ( 
                
                  B 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  A 
                 
                − 
                ( 
                
                  B 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  A 
                 
                ) 
                + 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  B 
                 
                ) 
               
             
            
              
                  
                = 
                  
                ∇ 
                
                  ⋅ 
                 
                
                  ( 
                  
                    
                      B 
                     
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                   
                  ) 
                 
                − 
                ∇ 
                
                  ⋅ 
                 
                
                  ( 
                  
                    
                      A 
                     
                    
                      
                        B 
                       
                      
                        
                          T 
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                  
                = 
                  
                ∇ 
                
                  ⋅ 
                 
                
                  ( 
                  
                    
                      B 
                     
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                    − 
                    
                      A 
                     
                    
                      
                        B 
                       
                      
                        
                          T 
                         
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\nabla \times (\mathbf {A} \times \mathbf {B} )&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,-\,\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} )\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\right)\,-\,\nabla {\cdot }\left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\,-\,\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  A 
                 
                × 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
               
              
                  
                = 
                  
                
                  ∇ 
                  
                    
                      B 
                     
                   
                 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                
                  B 
                 
                ) 
                − 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  B 
                 
               
             
            
              
                  
                = 
                  
                
                  A 
                 
                ⋅ 
                
                  
                    J 
                   
                  
                    
                      B 
                     
                   
                 
                − 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  B 
                 
               
             
            
              
                  
                = 
                  
                ( 
                ∇ 
                
                  B 
                 
                ) 
                ⋅ 
                
                  A 
                 
                − 
                
                  A 
                 
                ⋅ 
                ( 
                ∇ 
                
                  B 
                 
                ) 
               
             
            
              
                  
                = 
                  
                
                  A 
                 
                ⋅ 
                ( 
                
                  
                    J 
                   
                  
                    
                      B 
                     
                   
                 
                − 
                
                  
                    J 
                   
                  
                    
                      B 
                     
                   
                  
                    
                      T 
                     
                   
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mathbf {A} \times (\nabla \times \mathbf {B} )&\ =\ \nabla _{\mathbf {B} }(\mathbf {A} {\cdot }\mathbf {B} )\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} \cdot (\nabla \mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \cdot (\mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}})\\[5pt]\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                ( 
                
                  A 
                 
                × 
                ∇ 
                ) 
                × 
                
                  B 
                 
               
              
                  
                = 
                  
                ( 
                ∇ 
                
                  B 
                 
                ) 
                ⋅ 
                
                  A 
                 
                − 
                
                  A 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  B 
                 
                ) 
               
             
            
              
                  
                = 
                  
                
                  A 
                 
                × 
                ( 
                ∇ 
                × 
                
                  B 
                 
                ) 
                + 
                ( 
                
                  A 
                 
                
                  ⋅ 
                 
                ∇ 
                ) 
                
                  B 
                 
                − 
                
                  A 
                 
                ( 
                ∇ 
                
                  ⋅ 
                 
                
                  B 
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}(\mathbf {A} \times \nabla )\times \mathbf {B} &\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \times (\nabla \times \mathbf {B} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\end{aligned}}} 
   
 
  
    
      
        ( 
        
          A 
         
        × 
        ∇ 
        ) 
        ⋅ 
        
          B 
         
          
        = 
          
        
          A 
         
        ⋅ 
        ( 
        ∇ 
        
          × 
         
        
          B 
         
        ) 
       
     
    {\displaystyle (\mathbf {A} \times \nabla )\cdot \mathbf {B} \ =\ \mathbf {A} \cdot (\nabla {\times }\mathbf {B} )} 
   
 Note that the matrix 
  
    
      
        
          
            J 
           
          
            
              B 
             
           
         
        − 
        
          
            J 
           
          
            
              B 
             
           
          
            
              T 
             
           
         
       
     
    {\displaystyle \mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}}} 
   
 
Second derivative identities [ edit ] Divergence of curl is zero [ edit ] The divergence  of the curl of any  continuously twice-differentiable vector field  A  is always zero:
  
    
      
        ∇ 
        ⋅ 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        = 
        0 
       
     
    {\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0} 
   
 
This is a special case of the vanishing of the square of the exterior derivative  in the De Rham  chain complex .
Divergence of gradient is Laplacian [ edit ] The Laplacian  of a scalar field is the divergence of its gradient:
  
    
      
        Δ 
        ψ 
        = 
        
          ∇ 
          
            2 
           
         
        ψ 
        = 
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
       
     
    {\displaystyle \Delta \psi =\nabla ^{2}\psi =\nabla \cdot (\nabla \psi )} 
   
 
Divergence of divergence is not defined [ edit ] The divergence of a vector field A  is a scalar, and the divergence of a scalar quantity is undefined. Therefore,
  
    
      
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        
           is undefined. 
         
       
     
    {\displaystyle \nabla \cdot (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}} 
   
 
Curl of gradient is zero [ edit ] The curl  of the gradient  of any  continuously twice-differentiable scalar field  
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 differentiability class  
  
    
      
        
          C 
          
            2 
           
         
       
     
    {\displaystyle C^{2}} 
   
 zero vector :
  
    
      
        ∇ 
        × 
        ( 
        ∇ 
        φ 
        ) 
        = 
        
          0 
         
        . 
       
     
    {\displaystyle \nabla \times (\nabla \varphi )=\mathbf {0} .} 
   
 
It can be easily proved by expressing 
  
    
      
        ∇ 
        × 
        ( 
        ∇ 
        φ 
        ) 
       
     
    {\displaystyle \nabla \times (\nabla \varphi )} 
   
 Cartesian coordinate system  with Schwarz's theorem  (also called Clairaut's theorem on equality of mixed partials). This result is a special case of the vanishing of the square of the exterior derivative  in the De Rham  chain complex .
  
    
      
        ∇ 
        × 
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
          
        = 
          
        ∇ 
        ( 
        ∇ 
        
          ⋅ 
         
        
          A 
         
        ) 
        − 
        
          ∇ 
          
            2 
             
         
        
          A 
         
       
     
    {\displaystyle \nabla \times \left(\nabla \times \mathbf {A} \right)\ =\ \nabla (\nabla {\cdot }\mathbf {A} )\,-\,\nabla ^{2\!}\mathbf {A} } 
   
 
Here ∇2  is the vector Laplacian  operating on the vector field A .
Curl of divergence is not defined [ edit ] The divergence  of a vector field A  is a scalar, and the curl of a scalar quantity is undefined. Therefore,
  
    
      
        ∇ 
        × 
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        
           is undefined. 
         
       
     
    {\displaystyle \nabla \times (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}} 
   
 
Second derivative associative properties [ edit ] 
  
    
      
        ( 
        ∇ 
        ⋅ 
        ∇ 
        ) 
        ψ 
        = 
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
        = 
        
          ∇ 
          
            2 
           
         
        ψ 
       
     
    {\displaystyle (\nabla \cdot \nabla )\psi =\nabla \cdot (\nabla \psi )=\nabla ^{2}\psi } 
   
 
  
    
      
        ( 
        ∇ 
        ⋅ 
        ∇ 
        ) 
        
          A 
         
        = 
        ∇ 
        ⋅ 
        ( 
        ∇ 
        
          A 
         
        ) 
        = 
        
          ∇ 
          
            2 
           
         
        
          A 
         
       
     
    {\displaystyle (\nabla \cdot \nabla )\mathbf {A} =\nabla \cdot (\nabla \mathbf {A} )=\nabla ^{2}\mathbf {A} } 
   
 
  
    
      
        ( 
        ∇ 
        × 
        ∇ 
        ) 
        ψ 
        = 
        ∇ 
        × 
        ( 
        ∇ 
        ψ 
        ) 
        = 
        
          0 
         
       
     
    {\displaystyle (\nabla \times \nabla )\psi =\nabla \times (\nabla \psi )=\mathbf {0} } 
   
 
  
    
      
        ( 
        ∇ 
        × 
        ∇ 
        ) 
        
          A 
         
        = 
        ∇ 
        × 
        ( 
        ∇ 
        
          A 
         
        ) 
        = 
        
          0 
         
       
     
    {\displaystyle (\nabla \times \nabla )\mathbf {A} =\nabla \times (\nabla \mathbf {A} )=\mathbf {0} } 
   
 DCG chart:  Some rules for second derivatives.  The figure to the right is a mnemonic for some of these identities. The abbreviations used are:
D: divergence, 
C: curl, 
G: gradient, 
L: Laplacian, 
CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
Summary of important identities [ edit ] 
  
    
      
        ∇ 
        ( 
        ψ 
        + 
        ϕ 
        ) 
        = 
        ∇ 
        ψ 
        + 
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi } 
   
 
  
    
      
        ∇ 
        ( 
        ψ 
        ϕ 
        ) 
        = 
        ϕ 
        ∇ 
        ψ 
        + 
        ψ 
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla (\psi \phi )=\phi \nabla \psi +\psi \nabla \phi } 
   
 
  
    
      
        ∇ 
        ( 
        ψ 
        
          A 
         
        ) 
        = 
        ∇ 
        ψ 
        ⊗ 
        
          A 
         
        + 
        ψ 
        ∇ 
        
          A 
         
       
     
    {\displaystyle \nabla (\psi \mathbf {A} )=\nabla \psi \otimes \mathbf {A} +\psi \nabla \mathbf {A} } 
   
 
  
    
      
        ∇ 
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
        = 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
        + 
        ( 
        
          B 
         
        ⋅ 
        ∇ 
        ) 
        
          A 
         
        + 
        
          A 
         
        × 
        ( 
        ∇ 
        × 
        
          B 
         
        ) 
        + 
        
          B 
         
        × 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
       
     
    {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )} 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        
          A 
         
        + 
        
          B 
         
        ) 
        = 
        ∇ 
        ⋅ 
        
          A 
         
        + 
        ∇ 
        ⋅ 
        
          B 
         
       
     
    {\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        
          ( 
          
            ψ 
            
              A 
             
           
          ) 
         
        = 
        ψ 
        ∇ 
        ⋅ 
        
          A 
         
        + 
        
          A 
         
        ⋅ 
        ∇ 
        ψ 
       
     
    {\displaystyle \nabla \cdot \left(\psi \mathbf {A} \right)=\psi \nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla \psi } 
   
 
  
    
      
        ∇ 
        ⋅ 
        
          ( 
          
            
              A 
             
            × 
            
              B 
             
           
          ) 
         
        = 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        ⋅ 
        
          B 
         
        − 
        ( 
        ∇ 
        × 
        
          B 
         
        ) 
        ⋅ 
        
          A 
         
       
     
    {\displaystyle \nabla \cdot \left(\mathbf {A} \times \mathbf {B} \right)=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -(\nabla \times \mathbf {B} )\cdot \mathbf {A} } 
   
 
  
    
      
        ∇ 
        × 
        ( 
        
          A 
         
        + 
        
          B 
         
        ) 
        = 
        ∇ 
        × 
        
          A 
         
        + 
        ∇ 
        × 
        
          B 
         
       
     
    {\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} } 
   
 
  
    
      
        ∇ 
        × 
        
          ( 
          
            ψ 
            
              A 
             
           
          ) 
         
        = 
        ψ 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        − 
        ( 
        
          A 
         
        × 
        ∇ 
        ) 
        ψ 
        = 
        ψ 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        + 
        ( 
        ∇ 
        ψ 
        ) 
        × 
        
          A 
         
       
     
    {\displaystyle \nabla \times \left(\psi \mathbf {A} \right)=\psi \,(\nabla \times \mathbf {A} )-(\mathbf {A} \times \nabla )\psi =\psi \,(\nabla \times \mathbf {A} )+(\nabla \psi )\times \mathbf {A} } 
   
 
  
    
      
        ∇ 
        × 
        
          ( 
          
            ψ 
            ∇ 
            ϕ 
           
          ) 
         
        = 
        ∇ 
        ψ 
        × 
        ∇ 
        ϕ 
       
     
    {\displaystyle \nabla \times \left(\psi \nabla \phi \right)=\nabla \psi \times \nabla \phi } 
   
 
  
    
      
        ∇ 
        × 
        
          ( 
          
            
              A 
             
            × 
            
              B 
             
           
          ) 
         
        = 
        
          A 
         
        
          ( 
          
            ∇ 
            ⋅ 
            
              B 
             
           
          ) 
         
        − 
        
          B 
         
        
          ( 
          
            ∇ 
            ⋅ 
            
              A 
             
           
          ) 
         
        + 
        
          ( 
          
            
              B 
             
            ⋅ 
            ∇ 
           
          ) 
         
        
          A 
         
        − 
        
          ( 
          
            
              A 
             
            ⋅ 
            ∇ 
           
          ) 
         
        
          B 
         
       
     
    {\displaystyle \nabla \times \left(\mathbf {A} \times \mathbf {B} \right)=\mathbf {A} \left(\nabla \cdot \mathbf {B} \right)-\mathbf {B} \left(\nabla \cdot \mathbf {A} \right)+\left(\mathbf {B} \cdot \nabla \right)\mathbf {A} -\left(\mathbf {A} \cdot \nabla \right)\mathbf {B} } 
   
 [ 12] Vector-dot-Del Operator [ edit ] 
  
    
      
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
        = 
        
          
            1 
            2 
           
         
        
          
            [ 
           
         
        ∇ 
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
        − 
        
          B 
         
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        + 
        
          A 
         
        ( 
        ∇ 
        ⋅ 
        
          B 
         
        ) 
        − 
        ∇ 
        × 
        ( 
        
          A 
         
        × 
        
          B 
         
        ) 
        − 
        
          B 
         
        × 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        − 
        
          A 
         
        × 
        ( 
        ∇ 
        × 
        
          B 
         
        ) 
        
          
            ] 
           
         
       
     
    {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {B} ={\frac {1}{2}}{\Big [}\nabla (\mathbf {A} \cdot \mathbf {B} )-\mathbf {B} (\nabla \cdot \mathbf {A} )+\mathbf {A} (\nabla \cdot \mathbf {B} )-\nabla \times (\mathbf {A} \times \mathbf {B} )-\mathbf {B} \times (\nabla \times \mathbf {A} )-\mathbf {A} \times (\nabla \times \mathbf {B} ){\Big ]}} 
   
 [ 13] 
  
    
      
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          A 
         
        = 
        
          
            1 
            2 
           
         
        ∇ 
        
          | 
         
        
          A 
         
        
          
            | 
           
          
            2 
           
         
        − 
        
          A 
         
        × 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        = 
        
          
            1 
            2 
           
         
        ∇ 
        
          | 
         
        
          A 
         
        
          
            | 
           
          
            2 
           
         
        + 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        × 
        
          A 
         
       
     
    {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {A} ={\frac {1}{2}}\nabla |\mathbf {A} |^{2}-\mathbf {A} \times (\nabla \times \mathbf {A} )={\frac {1}{2}}\nabla |\mathbf {A} |^{2}+(\nabla \times \mathbf {A} )\times \mathbf {A} } 
   
 
  
    
      
        
          A 
         
        ⋅ 
        ∇ 
        ( 
        
          B 
         
        ⋅ 
        
          C 
         
        ) 
        = 
        
          B 
         
        ⋅ 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          C 
         
        + 
        
          C 
         
        ⋅ 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
       
     
    {\displaystyle \mathbf {A} \cdot \nabla (\mathbf {B} \cdot \mathbf {C} )=\mathbf {B} \cdot (\mathbf {A} \cdot \nabla )\mathbf {C} +\mathbf {C} \cdot (\mathbf {A} \cdot \nabla )\mathbf {B} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        = 
        0 
       
     
    {\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0} 
   
 
  
    
      
        ∇ 
        × 
        ( 
        ∇ 
        ψ 
        ) 
        = 
        
          0 
         
       
     
    {\displaystyle \nabla \times (\nabla \psi )=\mathbf {0} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
        = 
        
          ∇ 
          
            2 
           
         
        ψ 
       
     
    {\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi } 
   
 scalar Laplacian )
  
    
      
        ∇ 
        
          ( 
          
            ∇ 
            ⋅ 
            
              A 
             
           
          ) 
         
        − 
        ∇ 
        × 
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
        = 
        
          ∇ 
          
            2 
           
         
        
          A 
         
       
     
    {\displaystyle \nabla \left(\nabla \cdot \mathbf {A} \right)-\nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla ^{2}\mathbf {A} } 
   
 vector Laplacian )
  
    
      
        ∇ 
        ⋅ 
        
          
            [ 
           
         
        ∇ 
        
          A 
         
        + 
        ( 
        ∇ 
        
          A 
         
        
          ) 
          
            
              T 
             
           
         
        
          
            ] 
           
         
        = 
        
          ∇ 
          
            2 
           
         
        
          A 
         
        + 
        ∇ 
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
       
     
    {\displaystyle \nabla \cdot {\big [}\nabla \mathbf {A} +(\nabla \mathbf {A} )^{\textsf {T}}{\big ]}=\nabla ^{2}\mathbf {A} +\nabla (\nabla \cdot \mathbf {A} )} 
   
 
  
    
      
        ∇ 
        ⋅ 
        ( 
        ϕ 
        ∇ 
        ψ 
        ) 
        = 
        ϕ 
        
          ∇ 
          
            2 
           
         
        ψ 
        + 
        ∇ 
        ϕ 
        ⋅ 
        ∇ 
        ψ 
       
     
    {\displaystyle \nabla \cdot (\phi \nabla \psi )=\phi \nabla ^{2}\psi +\nabla \phi \cdot \nabla \psi } 
   
 
  
    
      
        ψ 
        
          ∇ 
          
            2 
           
         
        ϕ 
        − 
        ϕ 
        
          ∇ 
          
            2 
           
         
        ψ 
        = 
        ∇ 
        ⋅ 
        
          ( 
          
            ψ 
            ∇ 
            ϕ 
            − 
            ϕ 
            ∇ 
            ψ 
           
          ) 
         
       
     
    {\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ϕ 
        ψ 
        ) 
        = 
        ϕ 
        
          ∇ 
          
            2 
           
         
        ψ 
        + 
        2 
        ( 
        ∇ 
        ϕ 
        ) 
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
        + 
        
          ( 
          
            
              ∇ 
              
                2 
               
             
            ϕ 
           
          ) 
         
        ψ 
       
     
    {\displaystyle \nabla ^{2}(\phi \psi )=\phi \nabla ^{2}\psi +2(\nabla \phi )\cdot (\nabla \psi )+\left(\nabla ^{2}\phi \right)\psi } 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ψ 
        
          A 
         
        ) 
        = 
        
          A 
         
        
          ∇ 
          
            2 
           
         
        ψ 
        + 
        2 
        ( 
        ∇ 
        ψ 
        ⋅ 
        ∇ 
        ) 
        
          A 
         
        + 
        ψ 
        
          ∇ 
          
            2 
           
         
        
          A 
         
       
     
    {\displaystyle \nabla ^{2}(\psi \mathbf {A} )=\mathbf {A} \nabla ^{2}\psi +2(\nabla \psi \cdot \nabla )\mathbf {A} +\psi \nabla ^{2}\mathbf {A} } 
   
 
  
    
      
        ∇ 
        ⋅ 
        
          
            [ 
           
         
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        
          B 
         
        
          
            ] 
           
         
        = 
        ( 
        
          A 
         
        ⋅ 
        ∇ 
        ) 
        ( 
        ∇ 
        ⋅ 
        
          B 
         
        ) 
        + 
        ( 
        ∇ 
        
          A 
         
        ) 
        : 
        ( 
        ∇ 
        
          B 
         
        ) 
       
     
    {\displaystyle \nabla \cdot {\big [}(\mathbf {A} \cdot \nabla )\mathbf {B} {\big ]}=(\mathbf {A} \cdot \nabla )(\nabla \cdot \mathbf {B} )+(\nabla \mathbf {A} ):(\nabla \mathbf {B} )} 
   
 
  
    
      
        ∇ 
        × 
        
          [ 
          
            
              ( 
              
                
                  A 
                 
                ⋅ 
                ∇ 
               
              ) 
             
            
              A 
             
           
          ] 
         
        + 
        
          [ 
          
            
              ( 
              
                ∇ 
                × 
                
                  A 
                 
               
              ) 
             
            ⋅ 
            ∇ 
           
          ] 
         
        
          A 
         
        = 
        
          [ 
          
            
              ( 
              
                
                  A 
                 
                ⋅ 
                ∇ 
               
              ) 
             
            + 
            
              ( 
              
                ∇ 
                ⋅ 
                
                  A 
                 
               
              ) 
             
           
          ] 
         
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
       
     
    {\displaystyle \nabla \times \left[\left(\mathbf {A} \cdot \nabla \right)\mathbf {A} \right]+\left[\left(\nabla \times \mathbf {A} \right)\cdot \nabla \right]\mathbf {A} =\left[\left(\mathbf {A} \cdot \nabla \right)+\left(\nabla \cdot \mathbf {A} \right)\right]\left(\nabla \times \mathbf {A} \right)} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        
          A 
         
        ⋅ 
        
          B 
         
        ) 
        = 
        
          A 
         
        ⋅ 
        
          ∇ 
          
            2 
           
         
        
          B 
         
        − 
        
          B 
         
        ⋅ 
        
          ∇ 
          
            2 
           
         
        
          A 
         
        + 
        2 
        ∇ 
        ⋅ 
        ( 
        ( 
        
          B 
         
        ⋅ 
        ∇ 
        ) 
        
          A 
         
        + 
        
          B 
         
        × 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        ) 
       
     
    {\displaystyle \nabla ^{2}(\mathbf {A} \cdot \mathbf {B} )=\mathbf {A} \cdot \nabla ^{2}\mathbf {B} -\mathbf {B} \cdot \nabla ^{2}\!\mathbf {A} +2\nabla \cdot ((\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {B} \times (\nabla \times \mathbf {A} ))} 
   
 Green's vector identity )
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ∇ 
        ψ 
        ) 
        = 
        ∇ 
        ( 
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ψ 
        ) 
        ) 
        = 
        ∇ 
        
          ( 
          
            
              ∇ 
              
                2 
               
             
            ψ 
           
          ) 
         
       
     
    {\displaystyle \nabla ^{2}(\nabla \psi )=\nabla (\nabla \cdot (\nabla \psi ))=\nabla \left(\nabla ^{2}\psi \right)} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        = 
        ∇ 
        ⋅ 
        ( 
        ∇ 
        ( 
        ∇ 
        ⋅ 
        
          A 
         
        ) 
        ) 
        = 
        ∇ 
        ⋅ 
        
          ( 
          
            
              ∇ 
              
                2 
               
             
            
              A 
             
           
          ) 
         
       
     
    {\displaystyle \nabla ^{2}(\nabla \cdot \mathbf {A} )=\nabla \cdot (\nabla (\nabla \cdot \mathbf {A} ))=\nabla \cdot \left(\nabla ^{2}\mathbf {A} \right)} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        = 
        − 
        ∇ 
        × 
        ( 
        ∇ 
        × 
        ( 
        ∇ 
        × 
        
          A 
         
        ) 
        ) 
        = 
        ∇ 
        × 
        
          ( 
          
            
              ∇ 
              
                2 
               
             
            
              A 
             
           
          ) 
         
       
     
    {\displaystyle \nabla ^{2}(\nabla \times \mathbf {A} )=-\nabla \times (\nabla \times (\nabla \times \mathbf {A} ))=\nabla \times \left(\nabla ^{2}\mathbf {A} \right)} 
   
 Below, the curly symbol ∂  means "boundary of " a surface or solid.
[ edit ] In the following surface–volume integral theorems, V  denotes a three-dimensional volume with a corresponding two-dimensional boundary  S  = ∂V  (a closed surface ):
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        ψ 
        d 
        
          S 
         
          
        = 
          
        
          ∭ 
          
            V 
           
         
        ∇ 
        ψ 
        d 
        V 
       
     
    {\displaystyle \psi \,d\mathbf {S} \ =\ \iiint _{V}\nabla \psi \,dV} 
   
   
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          A 
         
        ⋅ 
        d 
        
          S 
         
          
        = 
          
        
          ∭ 
          
            V 
           
         
        ∇ 
        ⋅ 
        
          A 
         
        d 
        V 
       
     
    {\displaystyle \mathbf {A} \cdot d\mathbf {S} \ =\ \iiint _{V}\nabla \cdot \mathbf {A} \,dV} 
   
    (divergence theorem ) 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          A 
         
        × 
        d 
        
          S 
         
          
        = 
          
        − 
        
          ∭ 
          
            V 
           
         
        ∇ 
        × 
        
          A 
         
        d 
        V 
       
     
    {\displaystyle \mathbf {A} \times d\mathbf {S} \ =\ -\iiint _{V}\nabla \times \mathbf {A} \,dV} 
   
   
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        ψ 
        ∇ 
        φ 
        ⋅ 
        d 
        
          S 
         
          
        = 
          
        
          ∭ 
          
            V 
           
         
        
          ( 
          
            ψ 
            
              ∇ 
              
                2 
               
             
            φ 
            + 
            ∇ 
            φ 
            ⋅ 
            ∇ 
            ψ 
           
          ) 
         
        d 
        V 
       
     
    {\displaystyle \psi \nabla \!\varphi \cdot d\mathbf {S} \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi +\nabla \!\varphi \cdot \nabla \!\psi \right)\,dV} 
   
    (Green's first identity ) 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          ( 
          
            ψ 
            ∇ 
            φ 
            − 
            φ 
            ∇ 
            ψ 
           
          ) 
         
        ⋅ 
        d 
        
          S 
         
          
        = 
          
       
     
    {\displaystyle \left(\psi \nabla \!\varphi -\varphi \nabla \!\psi \right)\cdot d\mathbf {S} \ =\ } 
   
  
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          ( 
          
            ψ 
            
              
                
                  ∂ 
                  φ 
                 
                
                  ∂ 
                  n 
                 
               
             
            − 
            φ 
            
              
                
                  ∂ 
                  ψ 
                 
                
                  ∂ 
                  n 
                 
               
             
           
          ) 
         
        d 
        S 
       
     
    {\displaystyle \left(\psi {\frac {\partial \varphi }{\partial n}}-\varphi {\frac {\partial \psi }{\partial n}}\right)dS} 
   
   
  
    
      
        
            
          = 
            
          
            ∭ 
            
              V 
             
           
          
            ( 
            
              ψ 
              
                ∇ 
                
                  2 
                 
               
              φ 
              − 
              φ 
              
                ∇ 
                
                  2 
                 
               
              ψ 
             
            ) 
           
          d 
          V 
         
       
     
    {\displaystyle \displaystyle \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi -\varphi \nabla ^{2}\!\psi \right)\,dV} 
   
    (Green's second identity )
  
    
      
        
          ∭ 
          
            V 
           
         
        
          A 
         
        ⋅ 
        ∇ 
        ψ 
        d 
        V 
          
        = 
          
       
     
    {\displaystyle \iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV\ =\ } 
   
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        ψ 
        
          A 
         
        ⋅ 
        d 
        
          S 
         
        − 
        
          ∭ 
          
            V 
           
         
        ψ 
        ∇ 
        ⋅ 
        
          A 
         
        d 
        V 
       
     
    {\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV} 
   
 integration by parts )
  
    
      
        
          ∭ 
          
            V 
           
         
        ψ 
        ∇ 
        ⋅ 
        
          A 
         
        d 
        V 
          
        = 
          
       
     
    {\displaystyle \iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV\ =\ } 
   
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        ψ 
        
          A 
         
        ⋅ 
        d 
        
          S 
         
        − 
        
          ∭ 
          
            V 
           
         
        
          A 
         
        ⋅ 
        ∇ 
        ψ 
        d 
        V 
       
     
    {\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV} 
   
 integration by parts )
  
    
      
        
          ∭ 
          
            V 
           
         
        
          A 
         
        ⋅ 
        
          ( 
          
            ∇ 
            × 
            
              B 
             
           
          ) 
         
        d 
        V 
          
        = 
          
        − 
       
     
    {\displaystyle \iiint _{V}\mathbf {A} \cdot \left(\nabla \times \mathbf {B} \right)\,dV\ =\ -} 
   
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          ( 
          
            
              A 
             
            × 
            
              B 
             
           
          ) 
         
        ⋅ 
        d 
        
          S 
         
        + 
        
          ∭ 
          
            V 
           
         
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
        ⋅ 
        
          B 
         
        d 
        V 
       
     
    {\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\cdot d\mathbf {S} +\iiint _{V}\left(\nabla \times \mathbf {A} \right)\cdot \mathbf {B} \,dV} 
   
 integration by parts ) 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          A 
         
        × 
        
          ( 
          
            d 
            
              S 
             
            ⋅ 
            
              ( 
              
                
                  B 
                 
                
                  
                    C 
                   
                  
                    
                      T 
                     
                   
                 
               
              ) 
             
           
          ) 
         
          
        = 
          
        
          ∭ 
          
            V 
           
         
        
          A 
         
        × 
        
          ( 
          
            ∇ 
            ⋅ 
            
              ( 
              
                
                  B 
                 
                
                  
                    C 
                   
                  
                    
                      T 
                     
                   
                 
               
              ) 
             
           
          ) 
         
        d 
        V 
        + 
        
          ∭ 
          
            V 
           
         
        
          B 
         
        ⋅ 
        ( 
        ∇ 
        
          A 
         
        ) 
        × 
        
          C 
         
        d 
        V 
       
     
    {\displaystyle \mathbf {A} \times \left(d\mathbf {S} \cdot \left(\mathbf {B} \mathbf {C} ^{\textsf {T}}\right)\right)\ =\ \iiint _{V}\mathbf {A} \times \left(\nabla \cdot \left(\mathbf {B} \mathbf {C} ^{\textsf {T}}\right)\right)\,dV+\iiint _{V}\mathbf {B} \cdot (\nabla \mathbf {A} )\times \mathbf {C} \,dV} 
   
   [ 14] 
  
    
      
        
          ∭ 
          
            V 
           
         
        
          ( 
          
            ∇ 
            ⋅ 
            
              B 
             
            + 
            
              B 
             
            ⋅ 
            ∇ 
           
          ) 
         
        
          A 
         
        d 
        V 
          
        = 
          
       
     
    {\displaystyle \iiint _{V}\left(\nabla \cdot \mathbf {B} +\mathbf {B} \cdot \nabla \right)\mathbf {A} \,dV\ =\ } 
   
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        
          ( 
          
            
              B 
             
            ⋅ 
            d 
            
              S 
             
           
          ) 
         
        
          A 
         
       
     
    {\displaystyle \left(\mathbf {B} \cdot d\mathbf {S} \right)\mathbf {A} } 
   
 [ 15] [ edit ] In the following curve–surface integral theorems, S  denotes a 2d open surface with a corresponding 1d boundary C  = ∂S  (a closed curve ):
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        
          A 
         
        ⋅ 
        d 
        
          ℓ 
         
          
        = 
          
        
          ∬ 
          
            S 
           
         
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
        ⋅ 
        d 
        
          S 
         
       
     
    {\displaystyle \oint _{\partial S}\mathbf {A} \cdot d{\boldsymbol {\ell }}\ =\ \iint _{S}\left(\nabla \times \mathbf {A} \right)\cdot d\mathbf {S} } 
   
 Stokes' theorem )
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        ψ 
        d 
        
          ℓ 
         
          
        = 
          
        − 
        
          ∬ 
          
            S 
           
         
        ∇ 
        ψ 
        × 
        d 
        
          S 
         
       
     
    {\displaystyle \oint _{\partial S}\psi \,d{\boldsymbol {\ell }}\ =\ -\iint _{S}\nabla \psi \times d\mathbf {S} } 
   
 
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        
          A 
         
        × 
        d 
        
          ℓ 
         
          
        = 
          
        − 
        
          ∬ 
          
            S 
           
         
        
          ( 
          
            ∇ 
            
              A 
             
            − 
            ( 
            ∇ 
            ⋅ 
            
              A 
             
            ) 
            
              1 
             
           
          ) 
         
        ⋅ 
        d 
        
          S 
         
          
        = 
          
        − 
        
          ∬ 
          
            S 
           
         
        
          ( 
          
            d 
            
              S 
             
            × 
            ∇ 
           
          ) 
         
        × 
        
          A 
         
       
     
    {\displaystyle \oint _{\partial S}\mathbf {A} \times d{\boldsymbol {\ell }}\ =\ -\iint _{S}\left(\nabla \mathbf {A} -(\nabla \cdot \mathbf {A} )\mathbf {1} \right)\cdot d\mathbf {S} \ =\ -\iint _{S}\left(d\mathbf {S} \times \nabla \right)\times \mathbf {A} } 
   
 
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        
          A 
         
        × 
        ( 
        
          B 
         
        × 
        d 
        
          ℓ 
         
        ) 
          
        = 
          
        
          ∬ 
          
            S 
           
         
        
          ( 
          
            ∇ 
            × 
            
              ( 
              
                
                  A 
                 
                
                  
                    B 
                   
                  
                    
                      T 
                     
                   
                 
               
              ) 
             
           
          ) 
         
        ⋅ 
        d 
        
          S 
         
        + 
        
          ∬ 
          
            S 
           
         
        
          ( 
          
            ∇ 
            ⋅ 
            
              ( 
              
                
                  B 
                 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
               
              ) 
             
           
          ) 
         
        × 
        d 
        
          S 
         
       
     
    {\displaystyle \oint _{\partial S}\mathbf {A} \times (\mathbf {B} \times d{\boldsymbol {\ell }})\ =\ \iint _{S}\left(\nabla \times \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\right)\cdot d\mathbf {S} +\iint _{S}\left(\nabla \cdot \left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\right)\right)\times d\mathbf {S} } 
   
 [ 16] 
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        ( 
        
          B 
         
        ⋅ 
        d 
        
          ℓ 
         
        ) 
        
          A 
         
        = 
        
          ∬ 
          
            S 
           
         
        ( 
        d 
        
          S 
         
        ⋅ 
        
          [ 
          
            ∇ 
            × 
            
              B 
             
            − 
            
              B 
             
            × 
            ∇ 
           
          ] 
         
        ) 
        
          A 
         
       
     
    {\displaystyle \oint _{\partial S}(\mathbf {B} \cdot d{\boldsymbol {\ell }})\mathbf {A} =\iint _{S}(d\mathbf {S} \cdot \left[\nabla \times \mathbf {B} -\mathbf {B} \times \nabla \right])\mathbf {A} } 
   
 [ 17] Integration around a closed curve in the clockwise  sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral ):
 
  
    
      
        
          
            ∂ 
            S 
           
         
       
     
    {\displaystyle {\scriptstyle \partial S}} 
   
 
  
    
      
        
          A 
         
        ⋅ 
        d 
        
          ℓ 
         
        = 
        − 
       
     
    {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} 
   
   
  
    
      
        
          
            ∂ 
            S 
           
         
       
     
    {\displaystyle {\scriptstyle \partial S}} 
   
 
  
    
      
        
          A 
         
        ⋅ 
        d 
        
          ℓ 
         
        . 
       
     
    {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}.} 
   
 Endpoint-curve integrals [ edit ] In the following endpoint–curve integral theorems, P  denotes a 1d open path with signed 0d boundary points 
  
    
      
        
          q 
         
        − 
        
          p 
         
        = 
        ∂ 
        P 
       
     
    {\displaystyle \mathbf {q} -\mathbf {p} =\partial P} 
   
 P  is from 
  
    
      
        
          p 
         
       
     
    {\displaystyle \mathbf {p} } 
   
 
  
    
      
        
          q 
         
       
     
    {\displaystyle \mathbf {q} } 
   
 
  
    
      
        ψ 
        
          
            | 
           
          
            ∂ 
            P 
           
         
        = 
        ψ 
        ( 
        
          q 
         
        ) 
        − 
        ψ 
        ( 
        
          p 
         
        ) 
        = 
        
          ∫ 
          
            P 
           
         
        ∇ 
        ψ 
        ⋅ 
        d 
        
          ℓ 
         
       
     
    {\displaystyle \psi |_{\partial P}=\psi (\mathbf {q} )-\psi (\mathbf {p} )=\int _{P}\nabla \psi \cdot d{\boldsymbol {\ell }}} 
   
 gradient theorem )
  
    
      
        
          A 
         
        
          
            | 
           
          
            ∂ 
            P 
           
         
        = 
        
          A 
         
        ( 
        
          q 
         
        ) 
        − 
        
          A 
         
        ( 
        
          p 
         
        ) 
        = 
        
          ∫ 
          
            P 
           
         
        
          ( 
          
            d 
            
              ℓ 
             
            ⋅ 
            ∇ 
           
          ) 
         
        
          A 
         
       
     
    {\displaystyle \mathbf {A} |_{\partial P}=\mathbf {A} (\mathbf {q} )-\mathbf {A} (\mathbf {p} )=\int _{P}\left(d{\boldsymbol {\ell }}\cdot \nabla \right)\mathbf {A} } 
   
 
  
    
      
        
          A 
         
        
          
            | 
           
          
            ∂ 
            P 
           
         
        = 
        
          A 
         
        ( 
        
          q 
         
        ) 
        − 
        
          A 
         
        ( 
        
          p 
         
        ) 
        = 
        
          ∫ 
          
            P 
           
         
        
          ( 
          
            ∇ 
            
              A 
             
           
          ) 
         
        ⋅ 
        d 
        
          ℓ 
         
        + 
        
          ∫ 
          
            P 
           
         
        
          ( 
          
            ∇ 
            × 
            
              A 
             
           
          ) 
         
        × 
        d 
        
          ℓ 
         
       
     
    {\displaystyle \mathbf {A} |_{\partial P}=\mathbf {A} (\mathbf {q} )-\mathbf {A} (\mathbf {p} )=\int _{P}\left(\nabla \mathbf {A} \right)\cdot d{\boldsymbol {\ell }}+\int _{P}\left(\nabla \times \mathbf {A} \right)\times d{\boldsymbol {\ell }}} 
   
 A tensor form of a vector integral theorem may be obtained by replacing the vector (or one of them) by a tensor, provided that the vector is first made to appear only as the right-most vector of each integrand. For example, Stokes' theorem becomes[ 18] 
  
    
      
        
          ∮ 
          
            ∂ 
            S 
           
         
        d 
        
          ℓ 
         
        ⋅ 
        
          T 
         
          
        = 
          
        
          ∬ 
          
            S 
           
         
        d 
        
          S 
         
        ⋅ 
        
          ( 
          
            ∇ 
            × 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle \oint _{\partial S}d{\boldsymbol {\ell }}\cdot \mathbf {T} \ =\ \iint _{S}d\mathbf {S} \cdot \left(\nabla \times \mathbf {T} \right)} 
   
 A scalar field may also be treated as a vector and replaced by a vector or tensor. For example, Green's first identity becomes
 
  
    
      
        
          ∂ 
          V 
         
       
     
    {\displaystyle \scriptstyle \partial V} 
   
 
  
    
      
        ψ 
        d 
        
          S 
         
        ⋅ 
        ∇ 
        
          A 
         
          
        = 
          
        
          ∭ 
          
            V 
           
         
        
          ( 
          
            ψ 
            
              ∇ 
              
                2 
               
             
            
              A 
             
            + 
            ∇ 
            ψ 
            ⋅ 
            ∇ 
            
              A 
             
           
          ) 
         
        d 
        V 
       
     
    {\displaystyle \psi \,d\mathbf {S} \cdot \nabla \!\mathbf {A} \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\mathbf {A} +\nabla \!\psi \cdot \nabla \!\mathbf {A} \right)\,dV} 
   
  .Similar rules apply to algebraic and differentiation formulas. For algebraic formulas one may alternatively use the left-most vector position.
^ Wilson, p. 404. 
^ Wilson, p. 407. 
^ Wilson, p. 407. 
^ Coffin, Joseph George (1911). Vector Analysis  ^ Feynman, R. P.; Leighton, R. B.; Sands, M. (1964). The Feynman Lectures on Physics ISBN  0-8053-9049-9  ^ Kholmetskii, A. L.; Missevitch, O. V. (2005). "The Faraday induction law in relativity theory". p. 4. arXiv :physics/0504223  ^ Coffin, pp. 227–228. 
^ Doran, C. ; Lasenby, A. (2003). Geometric algebra for physicists ISBN  978-0-521-71595-9 ^ Borisenko, A. I.; Tarapov, I. E. (1968). Vector and Tensor Analysis  ^ Wilson, Edwin Bidwell (1901). Vector Analysis  ^ Kelly, P. (2013). "Chapter 1.14 Tensor Calculus 1: Tensor Fields" . Mechanics Lecture Notes Part III: Foundations of Continuum Mechanics the original  (PDF)  on 3 December 2017. Retrieved 7 December  2017 . ^ "lecture15.pdf"  (PDF) .^ Kuo, Kenneth K.; Acharya, Ragini (2012). Applications of turbulent and multi-phase combustion doi :10.1002/9781118127575.app1 . ISBN  9781118127575 Archived  from the original on 19 April 2021. Retrieved 19 April  2020 . ^ Page and Adams, pp. 65–66. 
^ Wangsness, Roald K.; Cloud, Michael J. (1986). Electromagnetic Fields  (2nd ed.). Wiley. ISBN  978-0-471-81186-2  ^ Page, Leigh; Adams, Norman Ilsley, Jr. (1940). Electrodynamics  {{cite book }}:  CS1 maint: multiple names: authors list (link )^ Pérez-Garrido, Antonio (2024). "Recovering seldom-used theorems of vector calculus and their application to problems of electromagnetism". American Journal of Physics . 92  (5): 354– 359. arXiv :2312.17268 Bibcode :2024AmJPh..92e.354P . doi :10.1119/5.0182191 . ^ Wilson, p. 409.