In physics  and mathematics , the solid harmonics  are solutions of the Laplace equation  in spherical polar coordinates , assumed to be (smooth) functions 
  
    
      
        
          
            R 
           
          
            3 
           
         
        → 
        
          C 
         
       
     
    {\displaystyle \mathbb {R} ^{3}\to \mathbb {C} } 
   
 regular solid harmonics  
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
       
     
    {\displaystyle R_{\ell }^{m}(\mathbf {r} )} 
   
 irregular solid harmonics  
  
    
      
        
          I 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
       
     
    {\displaystyle I_{\ell }^{m}(\mathbf {r} )} 
   
 potential theory , and are obtained by rescaling spherical harmonics  appropriately:
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
        ≡ 
        
          
            
              
                4 
                π 
               
              
                2 
                ℓ 
                + 
                1 
               
             
           
         
        
          r 
          
            ℓ 
           
         
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        ( 
        θ 
        , 
        φ 
        ) 
       
     
    {\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi )} 
   
 
  
    
      
        
          I 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
        ≡ 
        
          
            
              
                4 
                π 
               
              
                2 
                ℓ 
                + 
                1 
               
             
           
         
        
          
            
              
                Y 
                
                  ℓ 
                 
                
                  m 
                 
               
              ( 
              θ 
              , 
              φ 
              ) 
             
            
              r 
              
                ℓ 
                + 
                1 
               
             
           
         
       
     
    {\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}} 
   
 
[ edit ] Introducing r , θ , and φ  for the spherical polar coordinates of the 3-vector r 
  
    
      
        Φ 
       
     
    {\displaystyle \Phi } 
   
 
  
    
      
        
          
            R 
           
          
            3 
           
         
        → 
        
          C 
         
       
     
    {\displaystyle \mathbb {R} ^{3}\to \mathbb {C} } 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        Φ 
        ( 
        
          r 
         
        ) 
        = 
        
          ( 
          
            
              
                1 
                r 
               
             
            
              
                
                  ∂ 
                  
                    2 
                   
                 
                
                  ∂ 
                  
                    r 
                    
                      2 
                     
                   
                 
               
             
            r 
            − 
            
              
                
                  
                    
                      
                        L 
                        ^ 
                       
                     
                   
                  
                    2 
                   
                 
                
                  r 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        Φ 
        ( 
        
          r 
         
        ) 
        = 
        0 
        , 
        
          r 
         
        ≠ 
        
          0 
         
        , 
       
     
    {\displaystyle \nabla ^{2}\Phi (\mathbf {r} )=\left({\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}r-{\frac {{\hat {L}}^{2}}{r^{2}}}\right)\Phi (\mathbf {r} )=0,\qquad \mathbf {r} \neq \mathbf {0} ,} 
   
 L 2 nondimensional  angular momentum operator ,
  
    
      
        
          
            
              L 
              ^ 
             
           
         
        = 
        − 
        i 
        ( 
        
          r 
         
        × 
        
          ∇ 
         
        ) 
        . 
       
     
    {\displaystyle \mathbf {\hat {L}} =-i\,(\mathbf {r} \times \mathbf {\nabla } ).} 
   
 
It is known  that spherical harmonics  Y m ℓ L 2 
  
    
      
        
          
            
              
                L 
                ^ 
               
             
           
          
            2 
           
         
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        ≡ 
        
          [ 
          
            
              
                
                  
                    L 
                    ^ 
                   
                 
               
              
                x 
               
              
                2 
               
             
            + 
            
              
                
                  
                    L 
                    ^ 
                   
                 
               
              
                y 
               
              
                2 
               
             
            + 
            
              
                
                  
                    L 
                    ^ 
                   
                 
               
              
                z 
               
              
                2 
               
             
           
          ] 
         
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        = 
        ℓ 
        ( 
        ℓ 
        + 
        1 
        ) 
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        . 
       
     
    {\displaystyle {\hat {L}}^{2}Y_{\ell }^{m}\equiv \left[{\hat {L}}_{x}^{2}+{\hat {L}}_{y}^{2}+{\hat {L}}_{z}^{2}\right]Y_{\ell }^{m}=\ell (\ell +1)Y_{\ell }^{m}.} 
   
 
Substitution of Φ(r ) = F (r ) Y m ℓ   into the Laplace equation gives, after dividing out the spherical harmonic function, the following  radial equation and its general solution,
  
    
      
        
          
            1 
            r 
           
         
        
          
            
              ∂ 
              
                2 
               
             
            
              ∂ 
              
                r 
                
                  2 
                 
               
             
           
         
        r 
        F 
        ( 
        r 
        ) 
        = 
        
          
            
              ℓ 
              ( 
              ℓ 
              + 
              1 
              ) 
             
            
              r 
              
                2 
               
             
           
         
        F 
        ( 
        r 
        ) 
        ⟹ 
        F 
        ( 
        r 
        ) 
        = 
        A 
        
          r 
          
            ℓ 
           
         
        + 
        B 
        
          r 
          
            − 
            ℓ 
            − 
            1 
           
         
        . 
       
     
    {\displaystyle {\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}rF(r)={\frac {\ell (\ell +1)}{r^{2}}}F(r)\Longrightarrow F(r)=Ar^{\ell }+Br^{-\ell -1}.} 
   
 
The particular solutions of the total Laplace equation are regular solid harmonics :
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
        ≡ 
        
          
            
              
                4 
                π 
               
              
                2 
                ℓ 
                + 
                1 
               
             
           
         
        
          r 
          
            ℓ 
           
         
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        ( 
        θ 
        , 
        φ 
        ) 
        , 
       
     
    {\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi ),} 
   
 irregular solid harmonics :
  
    
      
        
          I 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
        ≡ 
        
          
            
              
                4 
                π 
               
              
                2 
                ℓ 
                + 
                1 
               
             
           
         
        
          
            
              
                Y 
                
                  ℓ 
                 
                
                  m 
                 
               
              ( 
              θ 
              , 
              φ 
              ) 
             
            
              r 
              
                ℓ 
                + 
                1 
               
             
           
         
        . 
       
     
    {\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}.} 
   
 harmonic  homogeneous polynomials , i.e. homogeneous polynomials which are solutions to Laplace's equation .
[ edit ] Racah 's normalization (also known as Schmidt's semi-normalization) is applied to both functions 
  
    
      
        
          ∫ 
          
            0 
           
          
            π 
           
         
        sin 
         
        θ 
        d 
        θ 
        
          ∫ 
          
            0 
           
          
            2 
            π 
           
         
        d 
        φ 
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        
          ) 
          
            ∗ 
           
         
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        ) 
        = 
        
          
            
              4 
              π 
             
            
              2 
              ℓ 
              + 
              1 
             
           
         
        
          r 
          
            2 
            ℓ 
           
         
       
     
    {\displaystyle \int _{0}^{\pi }\sin \theta \,d\theta \int _{0}^{2\pi }d\varphi \;R_{\ell }^{m}(\mathbf {r} )^{*}\;R_{\ell }^{m}(\mathbf {r} )={\frac {4\pi }{2\ell +1}}r^{2\ell }} 
   
 
The translation of the regular solid harmonic gives a finite expansion,
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        + 
        
          a 
         
        ) 
        = 
        
          ∑ 
          
            λ 
            = 
            0 
           
          
            ℓ 
           
         
        
          
            
              
                ( 
               
              
                
                  2 
                  ℓ 
                 
                
                  2 
                  λ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          ∑ 
          
            μ 
            = 
            − 
            λ 
           
          
            λ 
           
         
        
          R 
          
            λ 
           
          
            μ 
           
         
        ( 
        
          r 
         
        ) 
        
          R 
          
            ℓ 
            − 
            λ 
           
          
            m 
            − 
            μ 
           
         
        ( 
        
          a 
         
        ) 
        ⟨ 
        λ 
        , 
        μ 
        ; 
        ℓ 
        − 
        λ 
        , 
        m 
        − 
        μ 
        
          | 
         
        ℓ 
        m 
        ⟩ 
        , 
       
     
    {\displaystyle R_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\ell }{\binom {2\ell }{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )R_{\ell -\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ,} 
   
 Clebsch–Gordan coefficient  is given by
  
    
      
        ⟨ 
        λ 
        , 
        μ 
        ; 
        ℓ 
        − 
        λ 
        , 
        m 
        − 
        μ 
        
          | 
         
        ℓ 
        m 
        ⟩ 
        = 
        
          
            
              
                ( 
               
              
                
                  ℓ 
                  + 
                  m 
                 
                
                  λ 
                  + 
                  μ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          
            
              
                ( 
               
              
                
                  ℓ 
                  − 
                  m 
                 
                
                  λ 
                  − 
                  μ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          
            
              
                ( 
               
              
                
                  2 
                  ℓ 
                 
                
                  2 
                  λ 
                 
               
              
                ) 
               
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        . 
       
     
    {\displaystyle \langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ={\binom {\ell +m}{\lambda +\mu }}^{1/2}{\binom {\ell -m}{\lambda -\mu }}^{1/2}{\binom {2\ell }{2\lambda }}^{-1/2}.} 
   
 
The similar expansion for irregular solid harmonics gives an infinite series,
  
    
      
        
          I 
          
            ℓ 
           
          
            m 
           
         
        ( 
        
          r 
         
        + 
        
          a 
         
        ) 
        = 
        
          ∑ 
          
            λ 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              
                ( 
               
              
                
                  2 
                  ℓ 
                  + 
                  2 
                  λ 
                  + 
                  1 
                 
                
                  2 
                  λ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          ∑ 
          
            μ 
            = 
            − 
            λ 
           
          
            λ 
           
         
        
          R 
          
            λ 
           
          
            μ 
           
         
        ( 
        
          r 
         
        ) 
        
          I 
          
            ℓ 
            + 
            λ 
           
          
            m 
            − 
            μ 
           
         
        ( 
        
          a 
         
        ) 
        ⟨ 
        λ 
        , 
        μ 
        ; 
        ℓ 
        + 
        λ 
        , 
        m 
        − 
        μ 
        
          | 
         
        ℓ 
        m 
        ⟩ 
       
     
    {\displaystyle I_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\infty }{\binom {2\ell +2\lambda +1}{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )I_{\ell +\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle } 
   
 
  
    
      
        
          | 
         
        r 
        
          | 
         
        ≤ 
        
          | 
         
        a 
        
          | 
         
         
     
    {\displaystyle |r|\leq |a|\,} 
   
 Clebsch-Gordan coefficient ,
  
    
      
        ⟨ 
        λ 
        , 
        μ 
        ; 
        ℓ 
        + 
        λ 
        , 
        m 
        − 
        μ 
        
          | 
         
        ℓ 
        m 
        ⟩ 
        = 
        ( 
        − 
        1 
        
          ) 
          
            λ 
            + 
            μ 
           
         
        
          
            
              
                ( 
               
              
                
                  ℓ 
                  + 
                  λ 
                  − 
                  m 
                  + 
                  μ 
                 
                
                  λ 
                  + 
                  μ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          
            
              
                ( 
               
              
                
                  ℓ 
                  + 
                  λ 
                  + 
                  m 
                  − 
                  μ 
                 
                
                  λ 
                  − 
                  μ 
                 
               
              
                ) 
               
             
           
          
            1 
            
              / 
             
            2 
           
         
        
          
            
              
                ( 
               
              
                
                  2 
                  ℓ 
                  + 
                  2 
                  λ 
                  + 
                  1 
                 
                
                  2 
                  λ 
                 
               
              
                ) 
               
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        . 
       
     
    {\displaystyle \langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle =(-1)^{\lambda +\mu }{\binom {\ell +\lambda -m+\mu }{\lambda +\mu }}^{1/2}{\binom {\ell +\lambda +m-\mu }{\lambda -\mu }}^{1/2}{\binom {2\ell +2\lambda +1}{2\lambda }}^{-1/2}.} 
   
 
The addition theorems were proved in different manners by several authors.[ 1] [ 2] 
The regular solid harmonics are homogeneous, polynomial solutions to the Laplace equation 
  
    
      
        Δ 
        R 
        = 
        0 
       
     
    {\displaystyle \Delta R=0} 
   
 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
  
    
      
        R 
        = 
        
          ∑ 
          
            a 
           
         
        
          p 
          
            a 
           
         
        ( 
        x 
        , 
        y 
        ) 
        
          z 
          
            a 
           
         
       
     
    {\textstyle R=\sum _{a}p_{a}(x,y)z^{a}} 
   
 
  
    
      
        
          p 
          
            a 
            + 
            2 
           
         
        = 
        
          
            
              − 
              
                ( 
                
                  
                    ∂ 
                    
                      x 
                     
                    
                      2 
                     
                   
                  + 
                  
                    ∂ 
                    
                      y 
                     
                    
                      2 
                     
                   
                 
                ) 
               
              
                p 
                
                  a 
                 
               
             
            
              
                ( 
                
                  a 
                  + 
                  2 
                 
                ) 
               
              
                ( 
                
                  a 
                  + 
                  1 
                 
                ) 
               
             
           
         
       
     
    {\displaystyle p_{a+2}={\frac {-\left(\partial _{x}^{2}+\partial _{y}^{2}\right)p_{a}}{\left(a+2\right)\left(a+1\right)}}} 
   
 
  
    
      
        
          p 
          
            0 
           
         
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle p_{0}(x,y)} 
   
 
  
    
      
        ℓ 
       
     
    {\displaystyle \ell } 
   
 
  
    
      
        
          p 
          
            1 
           
         
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle p_{1}(x,y)} 
   
 
  
    
      
        ℓ 
        − 
        1 
       
     
    {\displaystyle \ell -1} 
   
 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
 
  
    
      
        
          { 
          
            ( 
            
              x 
              
                2 
               
             
            + 
            
              y 
              
                2 
               
             
            
              ) 
              
                m 
               
             
            ( 
            x 
            ± 
            i 
            y 
            
              ) 
              
                k 
                − 
                2 
                m 
               
             
            ∣ 
            0 
            ≤ 
            m 
            ≤ 
            k 
            
              / 
             
            2 
           
          } 
         
       
     
    {\displaystyle \left\{(x^{2}+y^{2})^{m}(x\pm iy)^{k-2m}\mid 0\leq m\leq k/2\right\}} 
   
 eigenvectors  of the rotation group 
  
    
      
        S 
        O 
        ( 
        2 
        ) 
       
     
    {\displaystyle SO(2)} 
   
 
  
    
      
        
          ρ 
          
            α 
           
         
       
     
    {\displaystyle \rho _{\alpha }} 
   
 
  
    
      
        α 
        ∈ 
        [ 
        0 
        , 
        2 
        π 
        ] 
       
     
    {\displaystyle \alpha \in [0,2\pi ]} 
   
 
  
    
      
        
          e 
          
            ± 
            i 
            ( 
            k 
            − 
            2 
            m 
            ) 
            α 
           
         
       
     
    {\displaystyle e^{\pm i(k-2m)\alpha }} 
   
 
  
    
      
        ( 
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        
          ) 
          
            m 
           
         
        ( 
        x 
        + 
        i 
        y 
        
          ) 
          
            k 
            − 
            2 
            m 
           
         
       
     
    {\displaystyle (x^{2}+y^{2})^{m}(x+iy)^{k-2m}} 
   
 
If we combine the degree 
  
    
      
        ℓ 
       
     
    {\displaystyle \ell } 
   
 
  
    
      
        ℓ 
        − 
        1 
       
     
    {\displaystyle \ell -1} 
   
 
  
    
      
        ℓ 
       
     
    {\displaystyle \ell } 
   
 
  
    
      
        S 
        O 
        ( 
        2 
        ) 
       
     
    {\displaystyle SO(2)} 
   
 
  
    
      
        S 
        O 
        ( 
        2 
        ) 
       
     
    {\displaystyle SO(2)} 
   
 
  
    
      
        
          
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ℓ 
                   
                 
               
              
                = 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                   
                 
                
                  z 
                  
                    0 
                   
                 
               
             
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ( 
                    ℓ 
                    − 
                    1 
                    ) 
                   
                 
               
              
                = 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                    − 
                    1 
                   
                 
                
                  z 
                  
                    1 
                   
                 
               
             
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ( 
                    ℓ 
                    − 
                    2 
                    ) 
                   
                 
               
              
                = 
                ( 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  y 
                  
                    2 
                   
                 
                ) 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                    − 
                    2 
                   
                 
                
                  z 
                  
                    0 
                   
                 
                + 
                
                  
                    
                      − 
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      ) 
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          ) 
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              2 
                             
                           
                         
                        ) 
                       
                     
                    
                      1 
                      ⋅ 
                      2 
                     
                   
                 
                
                  z 
                  
                    2 
                   
                 
               
             
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ( 
                    ℓ 
                    − 
                    3 
                    ) 
                   
                 
               
              
                = 
                ( 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  y 
                  
                    2 
                   
                 
                ) 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                    − 
                    3 
                   
                 
                
                  z 
                  
                    1 
                   
                 
                + 
                
                  
                    
                      − 
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      ) 
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          ) 
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              3 
                             
                           
                         
                        ) 
                       
                     
                    
                      2 
                      ⋅ 
                      3 
                     
                   
                 
                
                  z 
                  
                    3 
                   
                 
               
             
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ( 
                    ℓ 
                    − 
                    4 
                    ) 
                   
                 
               
              
                = 
                ( 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  y 
                  
                    2 
                   
                 
                
                  ) 
                  
                    2 
                   
                 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                    − 
                    4 
                   
                 
                
                  z 
                  
                    0 
                   
                 
                + 
                
                  
                    
                      − 
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      ) 
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              4 
                             
                           
                         
                        ) 
                       
                     
                    
                      1 
                      ⋅ 
                      2 
                     
                   
                 
                
                  z 
                  
                    2 
                   
                 
                + 
                
                  
                    
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      
                        ) 
                        
                          2 
                         
                       
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              4 
                             
                           
                         
                        ) 
                       
                     
                    
                      1 
                      ⋅ 
                      2 
                      ⋅ 
                      3 
                      ⋅ 
                      4 
                     
                   
                 
                
                  z 
                  
                    4 
                   
                 
               
             
            
              
                
                  R 
                  
                    ℓ 
                   
                  
                    ± 
                    ( 
                    ℓ 
                    − 
                    5 
                    ) 
                   
                 
               
              
                = 
                ( 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  y 
                  
                    2 
                   
                 
                
                  ) 
                  
                    2 
                   
                 
                ( 
                x 
                ± 
                i 
                y 
                
                  ) 
                  
                    ℓ 
                    − 
                    5 
                   
                 
                
                  z 
                  
                    1 
                   
                 
                + 
                
                  
                    
                      − 
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      ) 
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              5 
                             
                           
                         
                        ) 
                       
                     
                    
                      2 
                      ⋅ 
                      3 
                     
                   
                 
                
                  z 
                  
                    3 
                   
                 
                + 
                
                  
                    
                      ( 
                      
                        ∂ 
                        
                          x 
                         
                        
                          2 
                         
                       
                      + 
                      
                        ∂ 
                        
                          y 
                         
                        
                          2 
                         
                       
                      
                        ) 
                        
                          2 
                         
                       
                      
                        ( 
                        
                          ( 
                          
                            x 
                            
                              2 
                             
                           
                          + 
                          
                            y 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                          ( 
                          x 
                          ± 
                          i 
                          y 
                          
                            ) 
                            
                              ℓ 
                              − 
                              5 
                             
                           
                         
                        ) 
                       
                     
                    
                      2 
                      ⋅ 
                      3 
                      ⋅ 
                      4 
                      ⋅ 
                      5 
                     
                   
                 
                
                  z 
                  
                    5 
                   
                 
               
             
            
              
                ⋮ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}R_{\ell }^{\pm \ell }&=(x\pm iy)^{\ell }z^{0}\\R_{\ell }^{\pm (\ell -1)}&=(x\pm iy)^{\ell -1}z^{1}\\R_{\ell }^{\pm (\ell -2)}&=(x^{2}+y^{2})(x\pm iy)^{\ell -2}z^{0}+{\frac {-(\partial _{x}^{2}+\partial _{y}^{2})\left((x^{2}+y^{2})(x\pm iy)^{\ell -2}\right)}{1\cdot 2}}z^{2}\\R_{\ell }^{\pm (\ell -3)}&=(x^{2}+y^{2})(x\pm iy)^{\ell -3}z^{1}+{\frac {-(\partial _{x}^{2}+\partial _{y}^{2})\left((x^{2}+y^{2})(x\pm iy)^{\ell -3}\right)}{2\cdot 3}}z^{3}\\R_{\ell }^{\pm (\ell -4)}&=(x^{2}+y^{2})^{2}(x\pm iy)^{\ell -4}z^{0}+{\frac {-(\partial _{x}^{2}+\partial _{y}^{2})\left((x^{2}+y^{2})^{2}(x\pm iy)^{\ell -4}\right)}{1\cdot 2}}z^{2}+{\frac {(\partial _{x}^{2}+\partial _{y}^{2})^{2}\left((x^{2}+y^{2})^{2}(x\pm iy)^{\ell -4}\right)}{1\cdot 2\cdot 3\cdot 4}}z^{4}\\R_{\ell }^{\pm (\ell -5)}&=(x^{2}+y^{2})^{2}(x\pm iy)^{\ell -5}z^{1}+{\frac {-(\partial _{x}^{2}+\partial _{y}^{2})\left((x^{2}+y^{2})^{2}(x\pm iy)^{\ell -5}\right)}{2\cdot 3}}z^{3}+{\frac {(\partial _{x}^{2}+\partial _{y}^{2})^{2}\left((x^{2}+y^{2})^{2}(x\pm iy)^{\ell -5}\right)}{2\cdot 3\cdot 4\cdot 5}}z^{5}\\&\;\,\vdots \end{aligned}}} 
   
 
  
    
      
        
          R 
          
            ℓ 
           
          
            ± 
            m 
           
         
        = 
        
          
            { 
            
              
                
                  
                    ∑ 
                    
                      k 
                     
                   
                  ( 
                  
                    ∂ 
                    
                      x 
                     
                    
                      2 
                     
                   
                  + 
                  
                    ∂ 
                    
                      y 
                     
                    
                      2 
                     
                   
                  
                    ) 
                    
                      k 
                     
                   
                  
                    ( 
                    
                      ( 
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        y 
                        
                          2 
                         
                       
                      
                        ) 
                        
                          ( 
                          ℓ 
                          − 
                          m 
                          ) 
                          
                            / 
                           
                          2 
                         
                       
                      ( 
                      x 
                      ± 
                      i 
                      y 
                      
                        ) 
                        
                          m 
                         
                       
                     
                    ) 
                   
                  
                    
                      
                        ( 
                        − 
                        1 
                        
                          ) 
                          
                            k 
                           
                         
                        
                          z 
                          
                            2 
                            k 
                           
                         
                       
                      
                        ( 
                        2 
                        k 
                        ) 
                        ! 
                       
                     
                   
                 
                
                  ℓ 
                  − 
                  m 
                  
                     is even 
                   
                 
               
              
                
                  
                    ∑ 
                    
                      k 
                     
                   
                  ( 
                  
                    ∂ 
                    
                      x 
                     
                    
                      2 
                     
                   
                  + 
                  
                    ∂ 
                    
                      y 
                     
                    
                      2 
                     
                   
                  
                    ) 
                    
                      k 
                     
                   
                  
                    ( 
                    
                      ( 
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        y 
                        
                          2 
                         
                       
                      
                        ) 
                        
                          ( 
                          ℓ 
                          − 
                          1 
                          − 
                          m 
                          ) 
                          
                            / 
                           
                          2 
                         
                       
                      ( 
                      x 
                      ± 
                      i 
                      y 
                      
                        ) 
                        
                          m 
                         
                       
                     
                    ) 
                   
                  
                    
                      
                        ( 
                        − 
                        1 
                        
                          ) 
                          
                            k 
                           
                         
                        
                          z 
                          
                            2 
                            k 
                            + 
                            1 
                           
                         
                       
                      
                        ( 
                        2 
                        k 
                        + 
                        1 
                        ) 
                        ! 
                       
                     
                   
                 
                
                  ℓ 
                  − 
                  m 
                  
                     is odd 
                   
                 
               
             
             
         
       
     
    {\displaystyle R_{\ell }^{\pm m}={\begin{cases}\sum _{k}(\partial _{x}^{2}+\partial _{y}^{2})^{k}\left((x^{2}+y^{2})^{(\ell -m)/2}(x\pm iy)^{m}\right){\frac {(-1)^{k}z^{2k}}{(2k)!}}&\ell -m{\text{ is even}}\\\sum _{k}(\partial _{x}^{2}+\partial _{y}^{2})^{k}\left((x^{2}+y^{2})^{(\ell -1-m)/2}(x\pm iy)^{m}\right){\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}&\ell -m{\text{ is odd}}\end{cases}}} 
   
 
  
    
      
        0 
        ≤ 
        m 
        ≤ 
        ℓ 
       
     
    {\displaystyle 0\leq m\leq \ell } 
   
 
Plugging in spherical coordinates  
  
    
      
        x 
        = 
        r 
        cos 
         
        ( 
        θ 
        ) 
        sin 
         
        ( 
        φ 
        ) 
       
     
    {\displaystyle x=r\cos(\theta )\sin(\varphi )} 
   
 
  
    
      
        y 
        = 
        r 
        sin 
         
        ( 
        θ 
        ) 
        sin 
         
        ( 
        φ 
        ) 
       
     
    {\displaystyle y=r\sin(\theta )\sin(\varphi )} 
   
 
  
    
      
        z 
        = 
        r 
        cos 
         
        ( 
        φ 
        ) 
       
     
    {\displaystyle z=r\cos(\varphi )} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        
          r 
          
            2 
           
         
        sin 
         
        ( 
        φ 
        
          ) 
          
            2 
           
         
        = 
        
          r 
          
            2 
           
         
        ( 
        1 
        − 
        cos 
         
        ( 
        φ 
        
          ) 
          
            2 
           
         
        ) 
       
     
    {\displaystyle x^{2}+y^{2}=r^{2}\sin(\varphi )^{2}=r^{2}(1-\cos(\varphi )^{2})} 
   
 
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        = 
        
          r 
          
            ℓ 
           
         
        
          e 
          
            i 
            m 
            ϕ 
           
         
        
          P 
          
            ℓ 
           
          
            m 
           
         
        ( 
        cos 
         
        ( 
        ϑ 
        ) 
        ) 
       
     
    {\displaystyle R_{\ell }^{m}=r^{\ell }e^{im\phi }P_{\ell }^{m}(\cos(\vartheta ))} 
   
 
  
    
      
        
          P 
          
            ℓ 
           
          
            m 
           
         
       
     
    {\displaystyle P_{\ell }^{m}} 
   
 associated Legendre polynomial , and so 
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        = 
        
          r 
          
            ℓ 
           
         
        
          Y 
          
            ℓ 
           
          
            m 
           
         
        ( 
        θ 
        , 
        φ 
        ) 
       
     
    {\displaystyle R_{\ell }^{m}=r^{\ell }Y_{\ell }^{m}(\theta ,\varphi )} 
   
 
By a simple linear combination of solid harmonics of ±m   these functions are transformed into real functions, i.e. functions 
  
    
      
        
          
            R 
           
          
            3 
           
         
        → 
        
          R 
         
       
     
    {\displaystyle \mathbb {R} ^{3}\to \mathbb {R} } 
   
 
  
    
      
        ℓ 
       
     
    {\displaystyle \ell } 
   
 x , y , z . The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical atomic orbitals  and real multipole moments . The explicit Cartesian expression of the real regular harmonics will now be derived.
We write in agreement with the earlier definition 
  
    
      
        
          R 
          
            ℓ 
           
          
            m 
           
         
        ( 
        r 
        , 
        θ 
        , 
        φ 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            ( 
            m 
            + 
            
              | 
             
            m 
            
              | 
             
            ) 
            
              / 
             
            2 
           
         
        
          r 
          
            ℓ 
           
         
        
          Θ 
          
            ℓ 
           
          
            
              | 
             
            m 
            
              | 
             
           
         
        ( 
        cos 
         
        θ 
        ) 
        
          e 
          
            i 
            m 
            φ 
           
         
        , 
        − 
        ℓ 
        ≤ 
        m 
        ≤ 
        ℓ 
        , 
       
     
    {\displaystyle R_{\ell }^{m}(r,\theta ,\varphi )=(-1)^{(m+|m|)/2}\;r^{\ell }\;\Theta _{\ell }^{|m|}(\cos \theta )e^{im\varphi },\qquad -\ell \leq m\leq \ell ,} 
   
 
  
    
      
        
          Θ 
          
            ℓ 
           
          
            m 
           
         
        ( 
        cos 
         
        θ 
        ) 
        ≡ 
        
          
            [ 
            
              
                
                  ( 
                  ℓ 
                  − 
                  m 
                  ) 
                  ! 
                 
                
                  ( 
                  ℓ 
                  + 
                  m 
                  ) 
                  ! 
                 
               
             
            ] 
           
          
            1 
            
              / 
             
            2 
           
         
        
          sin 
          
            m 
           
         
         
        θ 
        
          
            
              
                d 
                
                  m 
                 
               
              
                P 
                
                  ℓ 
                 
               
              ( 
              cos 
               
              θ 
              ) 
             
            
              d 
              
                cos 
                
                  m 
                 
               
               
              θ 
             
           
         
        , 
        m 
        ≥ 
        0 
        , 
       
     
    {\displaystyle \Theta _{\ell }^{m}(\cos \theta )\equiv \left[{\frac {(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\,\sin ^{m}\theta \,{\frac {d^{m}P_{\ell }(\cos \theta )}{d\cos ^{m}\theta }},\qquad m\geq 0,} 
   
 
  
    
      
        
          P 
          
            ℓ 
           
         
        ( 
        cos 
         
        θ 
        ) 
       
     
    {\displaystyle P_{\ell }(\cos \theta )} 
   
 Legendre polynomial  of order ℓ .
The m  dependent phase is known as the Condon–Shortley phase .
The following expression defines the real regular solid harmonics:
  
    
      
        
          
            ( 
            
              
                
                  
                    C 
                    
                      ℓ 
                     
                    
                      m 
                     
                   
                 
               
              
                
                  
                    S 
                    
                      ℓ 
                     
                    
                      m 
                     
                   
                 
               
             
            ) 
           
         
        ≡ 
        
          
            2 
           
         
        
          r 
          
            ℓ 
           
         
        
          Θ 
          
            ℓ 
           
          
            m 
           
         
        
          
            ( 
            
              
                
                  cos 
                   
                  m 
                  φ 
                 
               
              
                
                  sin 
                   
                  m 
                  φ 
                 
               
             
            ) 
           
         
        = 
        
          
            1 
            
              2 
             
           
         
        
          
            ( 
            
              
                
                  ( 
                  − 
                  1 
                  
                    ) 
                    
                      m 
                     
                   
                 
                
                  1 
                 
               
              
                
                  − 
                  ( 
                  − 
                  1 
                  
                    ) 
                    
                      m 
                     
                   
                  i 
                 
                
                  i 
                 
               
             
            ) 
           
         
        
          
            ( 
            
              
                
                  
                    R 
                    
                      ℓ 
                     
                    
                      m 
                     
                   
                 
               
              
                
                  
                    R 
                    
                      ℓ 
                     
                    
                      − 
                      m 
                     
                   
                 
               
             
            ) 
           
         
        , 
        m 
        > 
        0. 
       
     
    {\displaystyle {\begin{pmatrix}C_{\ell }^{m}\\S_{\ell }^{m}\end{pmatrix}}\equiv {\sqrt {2}}\;r^{\ell }\;\Theta _{\ell }^{m}{\begin{pmatrix}\cos m\varphi \\\sin m\varphi \end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}(-1)^{m}&\quad 1\\-(-1)^{m}i&\quad i\end{pmatrix}}{\begin{pmatrix}R_{\ell }^{m}\\R_{\ell }^{-m}\end{pmatrix}},\qquad m>0.} 
   
 m  = 0
  
    
      
        
          C 
          
            ℓ 
           
          
            0 
           
         
        ≡ 
        
          R 
          
            ℓ 
           
          
            0 
           
         
        . 
       
     
    {\displaystyle C_{\ell }^{0}\equiv R_{\ell }^{0}.} 
   
 unitary matrix  the normalization of the real and the complex solid harmonics is the same.
Upon writing u  = cos θ m -th derivative of the Legendre polynomial can be written as the following expansion in u 
  
    
      
        
          
            
              
                d 
                
                  m 
                 
               
              
                P 
                
                  ℓ 
                 
               
              ( 
              u 
              ) 
             
            
              d 
              
                u 
                
                  m 
                 
               
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              ⌊ 
              
                ( 
                ℓ 
                − 
                m 
                ) 
                
                  / 
                 
                2 
               
              ⌋ 
             
           
         
        
          γ 
          
            ℓ 
            k 
           
          
            ( 
            m 
            ) 
           
         
        
          u 
          
            ℓ 
            − 
            2 
            k 
            − 
            m 
           
         
       
     
    {\displaystyle {\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;u^{\ell -2k-m}} 
   
 
  
    
      
        
          γ 
          
            ℓ 
            k 
           
          
            ( 
            m 
            ) 
           
         
        = 
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          2 
          
            − 
            ℓ 
           
         
        
          
            
              ( 
             
            
              ℓ 
              k 
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              
                2 
                ℓ 
                − 
                2 
                k 
               
              ℓ 
             
            
              ) 
             
           
         
        
          
            
              ( 
              ℓ 
              − 
              2 
              k 
              ) 
              ! 
             
            
              ( 
              ℓ 
              − 
              2 
              k 
              − 
              m 
              ) 
              ! 
             
           
         
        . 
       
     
    {\displaystyle \gamma _{\ell k}^{(m)}=(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}.} 
   
 z  = r  cos θ r , is a simple polynomial in z ,
  
    
      
        
          Π 
          
            ℓ 
           
          
            m 
           
         
        ( 
        z 
        ) 
        ≡ 
        
          r 
          
            ℓ 
            − 
            m 
           
         
        
          
            
              
                d 
                
                  m 
                 
               
              
                P 
                
                  ℓ 
                 
               
              ( 
              u 
              ) 
             
            
              d 
              
                u 
                
                  m 
                 
               
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              ⌊ 
              
                ( 
                ℓ 
                − 
                m 
                ) 
                
                  / 
                 
                2 
               
              ⌋ 
             
           
         
        
          γ 
          
            ℓ 
            k 
           
          
            ( 
            m 
            ) 
           
         
        
          r 
          
            2 
            k 
           
         
        
          z 
          
            ℓ 
            − 
            2 
            k 
            − 
            m 
           
         
        . 
       
     
    {\displaystyle \Pi _{\ell }^{m}(z)\equiv r^{\ell -m}{\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;r^{2k}\;z^{\ell -2k-m}.} 
   
 
x ,y )-dependent part[ edit ] Consider next, recalling that x  = r  sin θ  cos φ y  = r  sin θ  sin φ 
  
    
      
        
          r 
          
            m 
           
         
        
          sin 
          
            m 
           
         
         
        θ 
        cos 
         
        m 
        φ 
        = 
        
          
            1 
            2 
           
         
        
          [ 
          
            ( 
            r 
            sin 
             
            θ 
            
              e 
              
                i 
                φ 
               
             
            
              ) 
              
                m 
               
             
            + 
            ( 
            r 
            sin 
             
            θ 
            
              e 
              
                − 
                i 
                φ 
               
             
            
              ) 
              
                m 
               
             
           
          ] 
         
        = 
        
          
            1 
            2 
           
         
        
          [ 
          
            ( 
            x 
            + 
            i 
            y 
            
              ) 
              
                m 
               
             
            + 
            ( 
            x 
            − 
            i 
            y 
            
              ) 
              
                m 
               
             
           
          ] 
         
       
     
    {\displaystyle r^{m}\sin ^{m}\theta \cos m\varphi ={\frac {1}{2}}\left[(r\sin \theta e^{i\varphi })^{m}+(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]} 
   
 
  
    
      
        
          r 
          
            m 
           
         
        
          sin 
          
            m 
           
         
         
        θ 
        sin 
         
        m 
        φ 
        = 
        
          
            1 
            
              2 
              i 
             
           
         
        
          [ 
          
            ( 
            r 
            sin 
             
            θ 
            
              e 
              
                i 
                φ 
               
             
            
              ) 
              
                m 
               
             
            − 
            ( 
            r 
            sin 
             
            θ 
            
              e 
              
                − 
                i 
                φ 
               
             
            
              ) 
              
                m 
               
             
           
          ] 
         
        = 
        
          
            1 
            
              2 
              i 
             
           
         
        
          [ 
          
            ( 
            x 
            + 
            i 
            y 
            
              ) 
              
                m 
               
             
            − 
            ( 
            x 
            − 
            i 
            y 
            
              ) 
              
                m 
               
             
           
          ] 
         
        . 
       
     
    {\displaystyle r^{m}\sin ^{m}\theta \sin m\varphi ={\frac {1}{2i}}\left[(r\sin \theta e^{i\varphi })^{m}-(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right].} 
   
 
  
    
      
        
          A 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
        ≡ 
        
          
            1 
            2 
           
         
        
          [ 
          
            ( 
            x 
            + 
            i 
            y 
            
              ) 
              
                m 
               
             
            + 
            ( 
            x 
            − 
            i 
            y 
            
              ) 
              
                m 
               
             
           
          ] 
         
        = 
        
          ∑ 
          
            p 
            = 
            0 
           
          
            m 
           
         
        
          
            
              ( 
             
            
              m 
              p 
             
            
              ) 
             
           
         
        
          x 
          
            p 
           
         
        
          y 
          
            m 
            − 
            p 
           
         
        cos 
         
        ( 
        m 
        − 
        p 
        ) 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle A_{m}(x,y)\equiv {\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\cos(m-p){\frac {\pi }{2}}} 
   
 
  
    
      
        
          B 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
        ≡ 
        
          
            1 
            
              2 
              i 
             
           
         
        
          [ 
          
            ( 
            x 
            + 
            i 
            y 
            
              ) 
              
                m 
               
             
            − 
            ( 
            x 
            − 
            i 
            y 
            
              ) 
              
                m 
               
             
           
          ] 
         
        = 
        
          ∑ 
          
            p 
            = 
            0 
           
          
            m 
           
         
        
          
            
              ( 
             
            
              m 
              p 
             
            
              ) 
             
           
         
        
          x 
          
            p 
           
         
        
          y 
          
            m 
            − 
            p 
           
         
        sin 
         
        ( 
        m 
        − 
        p 
        ) 
        
          
            π 
            2 
           
         
        . 
       
     
    {\displaystyle B_{m}(x,y)\equiv {\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\sin(m-p){\frac {\pi }{2}}.} 
   
 
  
    
      
        
          C 
          
            ℓ 
           
          
            m 
           
         
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
        = 
        
          
            [ 
            
              
                
                  ( 
                  2 
                  − 
                  
                    δ 
                    
                      m 
                      0 
                     
                   
                  ) 
                  ( 
                  ℓ 
                  − 
                  m 
                  ) 
                  ! 
                 
                
                  ( 
                  ℓ 
                  + 
                  m 
                  ) 
                  ! 
                 
               
             
            ] 
           
          
            1 
            
              / 
             
            2 
           
         
        
          Π 
          
            ℓ 
           
          
            m 
           
         
        ( 
        z 
        ) 
        
          A 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
        , 
        m 
        = 
        0 
        , 
        1 
        , 
        … 
        , 
        ℓ 
       
     
    {\displaystyle C_{\ell }^{m}(x,y,z)=\left[{\frac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;A_{m}(x,y),\qquad m=0,1,\ldots ,\ell } 
   
 
  
    
      
        
          S 
          
            ℓ 
           
          
            m 
           
         
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
        = 
        
          
            [ 
            
              
                
                  2 
                  ( 
                  ℓ 
                  − 
                  m 
                  ) 
                  ! 
                 
                
                  ( 
                  ℓ 
                  + 
                  m 
                  ) 
                  ! 
                 
               
             
            ] 
           
          
            1 
            
              / 
             
            2 
           
         
        
          Π 
          
            ℓ 
           
          
            m 
           
         
        ( 
        z 
        ) 
        
          B 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
        , 
        m 
        = 
        1 
        , 
        2 
        , 
        … 
        , 
        ℓ 
        . 
       
     
    {\displaystyle S_{\ell }^{m}(x,y,z)=\left[{\frac {2(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;B_{m}(x,y),\qquad m=1,2,\ldots ,\ell .} 
   
 
List of lowest functions [ edit ] We list explicitly the lowest functions up to and including ℓ  = 5
  
    
      
        
          
            
              
                Π 
                ¯ 
               
             
           
          
            ℓ 
           
          
            m 
           
         
        ( 
        z 
        ) 
        ≡ 
        
          
            [ 
            
              
                
                  
                    ( 
                    2 
                    − 
                    
                      δ 
                      
                        m 
                        0 
                       
                     
                    ) 
                    ( 
                    ℓ 
                    − 
                    m 
                    ) 
                    ! 
                   
                  
                    ( 
                    ℓ 
                    + 
                    m 
                    ) 
                    ! 
                   
                 
               
             
            ] 
           
          
            1 
            
              / 
             
            2 
           
         
        
          Π 
          
            ℓ 
           
          
            m 
           
         
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle {\bar {\Pi }}_{\ell }^{m}(z)\equiv \left[{\tfrac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z).} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    0 
                   
                  
                    0 
                   
                 
               
              
                = 
                1 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    3 
                   
                  
                    1 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                
                  
                    6 
                   
                 
                ( 
                5 
                
                  z 
                  
                    2 
                   
                 
                − 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    4 
                   
                  
                    4 
                   
                 
               
              
                = 
                
                  
                    1 
                    8 
                   
                 
                
                  
                    35 
                   
                 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                  
                    0 
                   
                 
               
              
                = 
                z 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    3 
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                
                  
                    15 
                   
                 
                z 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    0 
                   
                 
               
              
                = 
                
                  
                    1 
                    8 
                   
                 
                z 
                ( 
                63 
                
                  z 
                  
                    4 
                   
                 
                − 
                70 
                
                  z 
                  
                    2 
                   
                 
                
                  r 
                  
                    2 
                   
                 
                + 
                15 
                
                  r 
                  
                    4 
                   
                 
                ) 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                  
                    1 
                   
                 
               
              
                = 
                1 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    3 
                   
                  
                    3 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                
                  
                    10 
                   
                 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    1 
                   
                 
               
              
                = 
                
                  
                    1 
                    8 
                   
                 
                
                  
                    15 
                   
                 
                ( 
                21 
                
                  z 
                  
                    4 
                   
                 
                − 
                14 
                
                  z 
                  
                    2 
                   
                 
                
                  r 
                  
                    2 
                   
                 
                + 
                
                  r 
                  
                    4 
                   
                 
                ) 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                  
                    0 
                   
                 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                ( 
                3 
                
                  z 
                  
                    2 
                   
                 
                − 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    4 
                   
                  
                    0 
                   
                 
               
              
                = 
                
                  
                    1 
                    8 
                   
                 
                ( 
                35 
                
                  z 
                  
                    4 
                   
                 
                − 
                30 
                
                  r 
                  
                    2 
                   
                 
                
                  z 
                  
                    2 
                   
                 
                + 
                3 
                
                  r 
                  
                    4 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                
                  
                    105 
                   
                 
                ( 
                3 
                
                  z 
                  
                    2 
                   
                 
                − 
                
                  r 
                  
                    2 
                   
                 
                ) 
                z 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                  
                    1 
                   
                 
               
              
                = 
                
                  
                    3 
                   
                 
                z 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    4 
                   
                  
                    1 
                   
                 
               
              
                = 
                
                  
                    
                      10 
                     
                    4 
                   
                 
                z 
                ( 
                7 
                
                  z 
                  
                    2 
                   
                 
                − 
                3 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    3 
                   
                 
               
              
                = 
                
                  
                    1 
                    16 
                   
                 
                
                  
                    70 
                   
                 
                ( 
                9 
                
                  z 
                  
                    2 
                   
                 
                − 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                
                  
                    3 
                   
                 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    4 
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                
                  
                    5 
                   
                 
                ( 
                7 
                
                  z 
                  
                    2 
                   
                 
                − 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    4 
                   
                 
               
              
                = 
                
                  
                    3 
                    8 
                   
                 
                
                  
                    35 
                   
                 
                z 
               
             
            
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    3 
                   
                  
                    0 
                   
                 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                z 
                ( 
                5 
                
                  z 
                  
                    2 
                   
                 
                − 
                3 
                
                  r 
                  
                    2 
                   
                 
                ) 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    4 
                   
                  
                    3 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                
                  
                    70 
                   
                 
                z 
               
              
                
                  
                    
                      
                        Π 
                        ¯ 
                       
                     
                   
                  
                    5 
                   
                  
                    5 
                   
                 
               
              
                = 
                
                  
                    3 
                    16 
                   
                 
                
                  
                    14 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\bar {\Pi }}_{0}^{0}&=1&{\bar {\Pi }}_{3}^{1}&={\frac {1}{4}}{\sqrt {6}}(5z^{2}-r^{2})&{\bar {\Pi }}_{4}^{4}&={\frac {1}{8}}{\sqrt {35}}\\{\bar {\Pi }}_{1}^{0}&=z&{\bar {\Pi }}_{3}^{2}&={\frac {1}{2}}{\sqrt {15}}\;z&{\bar {\Pi }}_{5}^{0}&={\frac {1}{8}}z(63z^{4}-70z^{2}r^{2}+15r^{4})\\{\bar {\Pi }}_{1}^{1}&=1&{\bar {\Pi }}_{3}^{3}&={\frac {1}{4}}{\sqrt {10}}&{\bar {\Pi }}_{5}^{1}&={\frac {1}{8}}{\sqrt {15}}(21z^{4}-14z^{2}r^{2}+r^{4})\\{\bar {\Pi }}_{2}^{0}&={\frac {1}{2}}(3z^{2}-r^{2})&{\bar {\Pi }}_{4}^{0}&={\frac {1}{8}}(35z^{4}-30r^{2}z^{2}+3r^{4})&{\bar {\Pi }}_{5}^{2}&={\frac {1}{4}}{\sqrt {105}}(3z^{2}-r^{2})z\\{\bar {\Pi }}_{2}^{1}&={\sqrt {3}}z&{\bar {\Pi }}_{4}^{1}&={\frac {\sqrt {10}}{4}}z(7z^{2}-3r^{2})&{\bar {\Pi }}_{5}^{3}&={\frac {1}{16}}{\sqrt {70}}(9z^{2}-r^{2})\\{\bar {\Pi }}_{2}^{2}&={\frac {1}{2}}{\sqrt {3}}&{\bar {\Pi }}_{4}^{2}&={\frac {1}{4}}{\sqrt {5}}(7z^{2}-r^{2})&{\bar {\Pi }}_{5}^{4}&={\frac {3}{8}}{\sqrt {35}}z\\{\bar {\Pi }}_{3}^{0}&={\frac {1}{2}}z(5z^{2}-3r^{2})&{\bar {\Pi }}_{4}^{3}&={\frac {1}{4}}{\sqrt {70}}\;z&{\bar {\Pi }}_{5}^{5}&={\frac {3}{16}}{\sqrt {14}}\\\end{aligned}}} 
   
 
The lowest functions 
  
    
      
        
          A 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
         
     
    {\displaystyle A_{m}(x,y)\,} 
   
 
  
    
      
        
          B 
          
            m 
           
         
        ( 
        x 
        , 
        y 
        ) 
         
     
    {\displaystyle B_{m}(x,y)\,} 
   
 
m 
A m 
B m 
 
0
 
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
   
 
  
    
      
        0 
         
     
    {\displaystyle 0\,} 
   
  
1
 
  
    
      
        x 
         
     
    {\displaystyle x\,} 
   
 
  
    
      
        y 
         
     
    {\displaystyle y\,} 
   
  
2
 
  
    
      
        
          x 
          
            2 
           
         
        − 
        
          y 
          
            2 
           
         
         
     
    {\displaystyle x^{2}-y^{2}\,} 
   
 
  
    
      
        2 
        x 
        y 
         
     
    {\displaystyle 2xy\,} 
   
  
3
 
  
    
      
        
          x 
          
            3 
           
         
        − 
        3 
        x 
        
          y 
          
            2 
           
         
         
     
    {\displaystyle x^{3}-3xy^{2}\,} 
   
 
  
    
      
        3 
        
          x 
          
            2 
           
         
        y 
        − 
        
          y 
          
            3 
           
         
         
     
    {\displaystyle 3x^{2}y-y^{3}\,} 
   
  
4
 
  
    
      
        
          x 
          
            4 
           
         
        − 
        6 
        
          x 
          
            2 
           
         
        
          y 
          
            2 
           
         
        + 
        
          y 
          
            4 
           
         
         
     
    {\displaystyle x^{4}-6x^{2}y^{2}+y^{4}\,} 
   
 
  
    
      
        4 
        
          x 
          
            3 
           
         
        y 
        − 
        4 
        x 
        
          y 
          
            3 
           
         
         
     
    {\displaystyle 4x^{3}y-4xy^{3}\,} 
   
  
5
 
  
    
      
        
          x 
          
            5 
           
         
        − 
        10 
        
          x 
          
            3 
           
         
        
          y 
          
            2 
           
         
        + 
        5 
        x 
        
          y 
          
            4 
           
         
         
     
    {\displaystyle x^{5}-10x^{3}y^{2}+5xy^{4}\,} 
   
 
  
    
      
        5 
        
          x 
          
            4 
           
         
        y 
        − 
        10 
        
          x 
          
            2 
           
         
        
          y 
          
            3 
           
         
        + 
        
          y 
          
            5 
           
         
         
     
    {\displaystyle 5x^{4}y-10x^{2}y^{3}+y^{5}\,} 
   
  
^  R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10 , p. 1261 (1977) 
^  M. J. Caola, J. Phys. A: Math. Gen. Vol. 11 , p. L23 (1978) 
  
Steinborn, E. O.; Ruedenberg, K. (1973). "Rotation and Translation of Regular and Irregular Solid Spherical Harmonics". In Lowdin, Per-Olov (ed.). Advances in quantum chemistry . Vol. 7. Academic Press. pp. 1– 82. ISBN  9780080582320  Thompson, William J. (2004). Angular momentum: an illustrated guide to rotational symmetries for physical systems . Weinheim: Wiley-VCH. pp. 143– 148. ISBN  9783527617838