From Wikipedia, the free encyclopedia
					 
					
In mathematics, the Neville theta functions , named after Eric Harold Neville ,[ 1] [ 2] [ 3] [ 4] 
  
    
      
        
          θ 
          
            c 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          
            
              
                
                  2 
                  π 
                 
               
              q 
              ( 
              m 
              
                ) 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
             
            
              
                m 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
              
                
                  K 
                  ( 
                  m 
                  ) 
                 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        q 
        ( 
        m 
        ) 
        
          ) 
          
            k 
            ( 
            k 
            + 
            1 
            ) 
           
         
        cos 
         
        
          ( 
          
            
              
                ( 
                2 
                k 
                + 
                1 
                ) 
                π 
                z 
               
              
                2 
                K 
                ( 
                m 
                ) 
               
             
           
          ) 
         
       
     
    {\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} 
   
 
  
    
      
        
          θ 
          
            d 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          
            
              2 
              π 
             
            
              2 
              
                
                  K 
                  ( 
                  m 
                  ) 
                 
               
             
           
         
        
          ( 
          
            1 
            + 
            2 
            
              ∑ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            ( 
            q 
            ( 
            m 
            ) 
            
              ) 
              
                
                  k 
                  
                    2 
                   
                 
               
             
            cos 
             
            
              ( 
              
                
                  
                    π 
                    z 
                    k 
                   
                  
                    K 
                    ( 
                    m 
                    ) 
                   
                 
               
              ) 
             
           
          ) 
         
       
     
    {\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} 
   
 
  
    
      
        
          θ 
          
            n 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          
            
              2 
              π 
             
            
              2 
              ( 
              1 
              − 
              m 
              
                ) 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
              
                
                  K 
                  ( 
                  m 
                  ) 
                 
               
             
           
         
        
          ( 
          
            1 
            + 
            2 
            
              ∑ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            ( 
            − 
            1 
            
              ) 
              
                k 
               
             
            ( 
            q 
            ( 
            m 
            ) 
            
              ) 
              
                
                  k 
                  
                    2 
                   
                 
               
             
            cos 
             
            
              ( 
              
                
                  
                    π 
                    z 
                    k 
                   
                  
                    K 
                    ( 
                    m 
                    ) 
                   
                 
               
              ) 
             
           
          ) 
         
       
     
    {\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} 
   
 
  
    
      
        
          θ 
          
            s 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          
            
              
                
                  2 
                  π 
                 
               
              q 
              ( 
              m 
              
                ) 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
             
            
              
                m 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
              ( 
              1 
              − 
              m 
              
                ) 
                
                  1 
                  
                    / 
                   
                  4 
                 
               
              
                
                  K 
                  ( 
                  m 
                  ) 
                 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        ( 
        q 
        ( 
        m 
        ) 
        
          ) 
          
            k 
            ( 
            k 
            + 
            1 
            ) 
           
         
        sin 
         
        
          ( 
          
            
              
                ( 
                2 
                k 
                + 
                1 
                ) 
                π 
                z 
               
              
                2 
                K 
                ( 
                m 
                ) 
               
             
           
          ) 
         
       
     
    {\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} 
   
 where: K(m)  is the complete elliptic integral  of the first kind, 
  
    
      
        
          K 
          ′ 
         
        ( 
        m 
        ) 
        = 
        K 
        ( 
        1 
        − 
        m 
        ) 
       
     
    {\displaystyle K'(m)=K(1-m)} 
   
 
  
    
      
        q 
        ( 
        m 
        ) 
        = 
        
          e 
          
            − 
            π 
            
              K 
              ′ 
             
            ( 
            m 
            ) 
            
              / 
             
            K 
            ( 
            m 
            ) 
           
         
       
     
    {\displaystyle q(m)=e^{-\pi K'(m)/K(m)}} 
   
 
Note that the functions  θp (z,m)  are sometimes defined in terms of the nome q(m)  and written θp (z,q)  (e.g. NIST[ 5] τ  parameter θp (z|τ)  where 
  
    
      
        q 
        = 
        
          e 
          
            i 
            π 
            τ 
           
         
       
     
    {\displaystyle q=e^{i\pi \tau }} 
   
 
Relationship to other functions [ edit ] The Neville theta functions may be expressed in terms of the Jacobi theta functions[ 5] 
  
    
      
        
          θ 
          
            s 
           
         
        ( 
        z 
        
          | 
         
        τ 
        ) 
        = 
        
          θ 
          
            3 
           
          
            2 
           
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
        
          θ 
          
            1 
           
         
        ( 
        
          z 
          ′ 
         
        
          | 
         
        τ 
        ) 
        
          / 
         
        
          θ 
          
            1 
           
          ′ 
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
       
     
    {\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )} 
   
 
  
    
      
        
          θ 
          
            c 
           
         
        ( 
        z 
        
          | 
         
        τ 
        ) 
        = 
        
          θ 
          
            2 
           
         
        ( 
        
          z 
          ′ 
         
        
          | 
         
        τ 
        ) 
        
          / 
         
        
          θ 
          
            2 
           
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
       
     
    {\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )} 
   
 
  
    
      
        
          θ 
          
            n 
           
         
        ( 
        z 
        
          | 
         
        τ 
        ) 
        = 
        
          θ 
          
            4 
           
         
        ( 
        
          z 
          ′ 
         
        
          | 
         
        τ 
        ) 
        
          / 
         
        
          θ 
          
            4 
           
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
       
     
    {\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )} 
   
 
  
    
      
        
          θ 
          
            d 
           
         
        ( 
        z 
        
          | 
         
        τ 
        ) 
        = 
        
          θ 
          
            3 
           
         
        ( 
        
          z 
          ′ 
         
        
          | 
         
        τ 
        ) 
        
          / 
         
        
          θ 
          
            3 
           
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
       
     
    {\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )} 
   
 where 
  
    
      
        
          z 
          ′ 
         
        = 
        z 
        
          / 
         
        
          θ 
          
            3 
           
          
            2 
           
         
        ( 
        0 
        
          | 
         
        τ 
        ) 
       
     
    {\displaystyle z'=z/\theta _{3}^{2}(0|\tau )} 
   
 
The Neville theta functions are related to the Jacobi elliptic functions . If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then
  
    
      
        pq 
         
        ( 
        u 
        , 
        m 
        ) 
        = 
        
          
            
              
                θ 
                
                  p 
                 
               
              ( 
              u 
              , 
              m 
              ) 
             
            
              
                θ 
                
                  q 
                 
               
              ( 
              u 
              , 
              m 
              ) 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.} 
   
 
  
    
      
        
          θ 
          
            c 
           
         
        ( 
        2.5 
        , 
        0.3 
        ) 
        ≈ 
        − 
        0.65900466676738154967 
       
     
    {\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967} 
   
 
  
    
      
        
          θ 
          
            d 
           
         
        ( 
        2.5 
        , 
        0.3 
        ) 
        ≈ 
        0.95182196661267561994 
       
     
    {\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994} 
   
 
  
    
      
        
          θ 
          
            n 
           
         
        ( 
        2.5 
        , 
        0.3 
        ) 
        ≈ 
        1.0526693354651613637 
       
     
    {\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637} 
   
 
  
    
      
        
          θ 
          
            s 
           
         
        ( 
        2.5 
        , 
        0.3 
        ) 
        ≈ 
        0.82086879524530400536 
       
     
    {\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536} 
   
 
  
    
      
        
          θ 
          
            c 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          θ 
          
            c 
           
         
        ( 
        − 
        z 
        , 
        m 
        ) 
       
     
    {\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)} 
   
 
  
    
      
        
          θ 
          
            d 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          θ 
          
            d 
           
         
        ( 
        − 
        z 
        , 
        m 
        ) 
       
     
    {\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)} 
   
 
  
    
      
        
          θ 
          
            n 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        
          θ 
          
            n 
           
         
        ( 
        − 
        z 
        , 
        m 
        ) 
       
     
    {\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)} 
   
 
  
    
      
        
          θ 
          
            s 
           
         
        ( 
        z 
        , 
        m 
        ) 
        = 
        − 
        
          θ 
          
            s 
           
         
        ( 
        − 
        z 
        , 
        m 
        ) 
       
     
    {\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}