Jump to content

List of Johnson solids

Page semi-protected
From Wikipedia, the free encyclopedia

In geometry, a convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid.[1] Some authors exclude uniform polyhedra (in which all vertices are symmetric to each other) from the definition; uniform polyhedra include Platonic and Archimedean solids as well as prisms and antiprisms.[2] The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 non-uniform Johnson polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.[3]

This article lists the 92 non-uniform Johnson solids, accompanied by images. They are listed alongside their basic elements (vertices, edges, and faces), and their most important general characteristics, including symmetry groups (, , , , , ), order, surface area, and volume; an overview of these follows first, before presenting the complete list of non-uniform Johnson solids.

Characteristics

Every polyhedron has its own characteristics, including symmetry and measurement. An object is said to have symmetry if there is a transformation that maps it to itself. All of those transformations may be composed in a group, alongside the group's number of elements, known as the order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width; for a polyhedron, the surface area is the sum of the areas of all of its faces.[4] A volume is a measurement of a region in three-dimensional space.[5] The volume of a polyhedron may be ascertained in different ways: either through its base and height (like for pyramids and prisms), by slicing it off into pieces and summing their individual volumes, or by finding the root of a polynomial representing the polyhedron.[6]

A polygon that is rotated symmetrically by is denoted by , a cyclic group of order ; combining this with the reflection symmetry results in the symmetry of dihedral group of order .[7] In three-dimensional symmetry point groups, the transformations preserving a polyhedron's symmetry include the rotation around the line passing through the base center, known as the axis of symmetry, and the reflection relative to perpendicular planes passing through the bisector of a base, which is known as the pyramidal symmetry of order . The transformation that preserves a polyhedron's symmetry by reflecting it across a horizontal plane is known as the prismatic symmetry of order . The antiprismatic symmetry of order preserves the symmetry by rotating its half bottom and reflection across the horizontal plane.[8] The symmetry group of order preserves the symmetry by rotation around the axis of symmetry and reflection on the horizontal plane; the specific case preserving the symmetry by one full rotation is of order 2, often denoted as .[9]

The solids

Seventeen Johnson solids may be categorized as elementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The first six Johnson solids satisfy this criterion: the equilateral square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. The criterion is also satisfied by eleven other Johnson solids, specifically the tridiminished icosahedron, parabidiminished rhombicosidodecahedron, tridiminished rhombicosidodecahedron, snub disphenoid, snub square antiprism, sphenocorona, sphenomegacorona, hebesphenomegacorona, disphenocingulum, bilunabirotunda, and triangular hebesphenorotunda.[10] The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes. Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.[11]

The table below lists the 92 (non-uniform) Johnson solids, with edge length 1. The table includes each solid's enumeration (denoted as ).[12] It also includes the number of vertices, edges, and faces of each solid, as well as its symmetry group, surface area , and volume .

Table of the 92 Johnson solids
Solid name Image Vertices Edges Faces Symmetry group and its order[13] Surface area, exact, with edge length 1[14] Surface area, approximate, with edge length 1[14] Volume, exact, with edge length 1[14] Volume, approximate, with edge length 1[14]
1 Square pyramid 5 8 5 of order 8 2.7321 0.2357
2 Pentagonal pyramid 6 10 6 of order 10 3.8855 0.3015
3 Triangular cupola 9 15 8 of order 6 7.3301 1.1785
4 Square cupola 12 20 10 of order 8 11.5605 1.9428
5 Pentagonal cupola 15 25 12 of order 10 16.5798 2.3241
6 Pentagonal rotunda 20 35 17 of order 10 22.3472 6.9178
7 Elongated triangular pyramid 7 12 7 of order 6 4.7321 0.5509
8 Elongated square pyramid 9 16 9 of order 8 6.7321 1.2357
9 Elongated pentagonal pyramid 11 20 11 of order 10 8.8855 2.022
10 Gyroelongated square pyramid 9 20 13 of order 8 6.1962 1.1927
11 Gyroelongated pentagonal pyramid 11 25 16 of order 10 8.2157 1.8802
12 Triangular bipyramid 5 9 6 of order 12 2.5981 0.2357
13 Pentagonal bipyramid 7 15 10 of order 20 4.3301 0.6030
14 Elongated triangular bipyramid 8 15 9 of order 12 5.5981 0.6687
15 Elongated square bipyramid 10 20 12 of order 16 7.4641 1.4714
16 Elongated pentagonal bipyramid 12 25 15 of order 20 9.3301 2.3235
17 Gyroelongated square bipyramid 10 24 16 of order 16 6.9282 1.4284
18 Elongated triangular cupola 15 27 14 of order 6 13.3301 3.7766
19 Elongated square cupola 20 36 18 of order 8 19.5605 6.7712
20 Elongated pentagonal cupola 25 45 22 of order 10 26.5798 10.0183
21 Elongated pentagonal rotunda 30 55 27 of order 10 32.3472 14.612
22 Gyroelongated triangular cupola 15 33 20 of order 6 12.5263 3.5161
23 Gyroelongated square cupola 20 44 26 of order 8 18.4887 6.2108
24 Gyroelongated pentagonal cupola 25 55 32 of order 10 25.2400 9.0733
25 Gyroelongated pentagonal rotunda 30 65 37 of order 10 31.0075 13.6671
26 Gyrobifastigium 8 14 8 of order 8 5.7321 0.8660
27 Triangular orthobicupola 12 24 14 of order 12 9.4641 2.3570
28 Square orthobicupola 16 32 18 of order 16 13.4641 3.8856
29 Square gyrobicupola 16 32 18 of order 16
30 Pentagonal orthobicupola 20 40 22 of order 20 17.7711 4.6481
31 Pentagonal gyrobicupola 20 40 22 of order 20
32 Pentagonal orthocupolarotunda 25 50 27 of order 10 23.5385 9.2418
33 Pentagonal gyrocupolarotunda 25 50 27 of order 10 23.5385
34 Pentagonal orthobirotunda 30 60 32 of order 20 29.306 13.8355
35 Elongated triangular orthobicupola 18 36 20 of order 12 15.4641 4.9551
36 Elongated triangular gyrobicupola 18 36 20 of order 12
37 Elongated square gyrobicupola 24 48 26 of order 16 21.4641 8.714
38 Elongated pentagonal orthobicupola 30 60 32 of order 20 27.7711 12.3423
39 Elongated pentagonal gyrobicupola 30 60 32 of order 20
40 Elongated pentagonal orthocupolarotunda 35 70 37 of order 10 33.5385 16.936
41 Elongated pentagonal gyrocupolarotunda 35 70 37 of order 10
42 Elongated pentagonal orthobirotunda 40 80 42 of order 20 39.306 21.5297
43 Elongated pentagonal gyrobirotunda 40 80 42 of order 20
44 Gyroelongated triangular bicupola 18 42 26 of order 6 14.6603 4.6946
45 Gyroelongated square bicupola 24 56 34 of order 8 20.3923 8.1536
46 Gyroelongated pentagonal bicupola 30 70 42 of order 10 26.4313 11.3974
47 Gyroelongated pentagonal cupolarotunda 35 80 47 of order 5 32.1988 15.9911
48 Gyroelongated pentagonal birotunda 40 90 52 of order 10 37.9662 20.5848
49 Augmented triangular prism 7 13 8 of order 4 4.5981 0.6687
50 Biaugmented triangular prism 8 17 11 of order 4 5.3301 0.9044
51 Triaugmented triangular prism 9 21 14 of order 12 6.0622 1.1401
52 Augmented pentagonal prism 11 19 10 of order 4 9.173 1.9562
53 Biaugmented pentagonal prism 12 23 13 of order 4 9.9051 2.1919
54 Augmented hexagonal prism 13 22 11 of order 4 11.9282 2.8338
55 Parabiaugmented hexagonal prism 14 26 14 of order 8 12.6603 3.0695
56 Metabiaugmented hexagonal prism 14 26 14 of order 4
57 Triaugmented hexagonal prism 15 30 17 of order 12 13.3923 3.3052
58 Augmented dodecahedron 21 35 16 of order 10 21.0903 7.9646
59 Parabiaugmented dodecahedron 22 40 20 of order 20 21.5349 8.2661
60 Metabiaugmented dodecahedron 22 40 20 of order 4
61 Triaugmented dodecahedron 23 45 24 of order 6 21.9795 8.5676
62 Metabidiminished icosahedron 10 20 12 of order 4 7.7711 1.5787
63 Tridiminished icosahedron 9 15 8 of order 6 7.3265 1.2772
64 Augmented tridiminished icosahedron 10 18 10 of order 6 8.1925 1.3950
65 Augmented truncated tetrahedron 15 27 14 of order 6 14.2583 3.8891
66 Augmented truncated cube 28 48 22 of order 8 34.3383 15.5425
67 Biaugmented truncated cube 32 60 30 of order 16 36.2419 17.4853
68 Augmented truncated dodecahedron 65 105 42 of order 10 102.1821 87.3637
69 Parabiaugmented truncated dodecahedron 70 120 52 of order 20 103.3734 89.6878
70 Metabiaugmented truncated dodecahedron 70 120 52 of order 4
71 Triaugmented truncated dodecahedron 75 135 62 of order 6 104.5648 92.0118
72 Gyrate rhombicosidodecahedron 60 120 62 of order 10 59.306 41.6153
73 Parabigyrate rhombicosidodecahedron 60 120 62 of order 20
74 Metabigyrate rhombicosidodecahedron 60 120 62 of order 4
75 Trigyrate rhombicosidodecahedron 60 120 62 of order 6
76 Diminished rhombicosidodecahedron 55 105 52 of order 10 58.1147 39.2913
77 Paragyrate diminished rhombicosidodecahedron 55 105 52 of order 10
78 Metagyrate diminished rhombicosidodecahedron 55 105 52 of order 2
79 Bigyrate diminished rhombicosidodecahedron 55 105 52 of order 2
80 Parabidiminished rhombicosidodecahedron 50 90 42 of order 20 56.9233 36.9672
81 Metabidiminished rhombicosidodecahedron 50 90 42 of order 4
82 Gyrate bidiminished rhombicosidodecahedron 50 90 42 of order 2
83 Tridiminished rhombicosidodecahedron 45 75 32 of order 6 55.732 34.6432
84 Snub disphenoid 8 18 12 of order 8 5.1962   0.8595
85 Snub square antiprism 16 40 26 of order 16 12.3923   3.6012
86 Sphenocorona 10 22 14 of order 4 7.1962 1.5154
87 Augmented sphenocorona 11 26 17 of order 2 7.9282 1.7511
88 Sphenomegacorona 12 28 18 of order 4 8.9282   1.9481
89 Hebesphenomegacorona 14 33 21 of order 4 10.7942   2.9129
90 Disphenocingulum 16 38 24 of order 8 12.6603   3.7776
91 Bilunabirotunda 14 26 14 of order 8 12.346 3.0937
92 Triangular hebesphenorotunda 18 36 20 of order 6 16.3887 5.1087

References

  1. ^ Araki, Horiyama & Uehara (2015).
  2. ^
  3. ^
  4. ^ Walsh (2014), p. 284.
  5. ^ Parker (1997), p. 264.
  6. ^
  7. ^
  8. ^ Flusser, Suk & Zitofa (2017), p. 126.
  9. ^
  10. ^
  11. ^
  12. ^ Uehara (2020), p. 62.
  13. ^ Johnson (1966).
  14. ^ a b c d Berman (1971).

Bibliography