Method of notation of very large integers
In mathematics , Knuth's up-arrow notation  is a method of notation for very large  integers , introduced by Donald Knuth  in 1976.[ 1] 
In his 1947 paper,[ 2] R. L. Goodstein  introduced the specific sequence of operations that are now called hyperoperations tetration , pentation , etc., for the extended operations beyond exponentiation . The sequence starts with a unary operation  (the successor function  with n  = 0), and continues with the binary operations  of addition  (n  = 1), multiplication  (n  = 2), exponentiation  (n  = 3), tetration  (n  = 4), pentation  (n  = 5), etc.
Various notations  have been used to represent hyperoperations. One such notation is 
  
    
      
        
          H 
          
            n 
           
         
        ( 
        a 
        , 
        b 
        ) 
       
     
    {\displaystyle H_{n}(a,b)} 
   
 
  
    
      
        ↑ 
       
     
    {\displaystyle \uparrow } 
   
 
the single arrow 
  
    
      
        ↑ 
       
     
    {\displaystyle \uparrow } 
   
 exponentiation  (iterated multiplication) 
  
    
      
        2 
        ↑ 
        4 
        = 
        
          H 
          
            3 
           
         
        ( 
        2 
        , 
        4 
        ) 
        = 
        2 
        × 
        ( 
        2 
        × 
        ( 
        2 
        × 
        2 
        ) 
        ) 
        = 
        
          2 
          
            4 
           
         
        = 
        16 
       
     
    {\displaystyle 2\uparrow 4=H_{3}(2,4)=2\times (2\times (2\times 2))=2^{4}=16} 
   
  
the double arrow 
  
    
      
        ↑↑ 
       
     
    {\displaystyle \uparrow \uparrow } 
   
 tetration  (iterated exponentiation) 
  
    
      
        2 
        ↑↑ 
        4 
        = 
        
          H 
          
            4 
           
         
        ( 
        2 
        , 
        4 
        ) 
        = 
        2 
        ↑ 
        ( 
        2 
        ↑ 
        ( 
        2 
        ↑ 
        2 
        ) 
        ) 
        = 
        
          2 
          
            
              2 
              
                
                  2 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          2 
          
            16 
           
         
        = 
        65 
        , 
        536 
       
     
    {\displaystyle 2\uparrow \uparrow 4=H_{4}(2,4)=2\uparrow (2\uparrow (2\uparrow 2))=2^{2^{2^{2}}}=2^{16}=65,536} 
   
  
the triple arrow 
  
    
      
        ↑↑↑ 
       
     
    {\displaystyle \uparrow \uparrow \uparrow } 
   
 pentation  (iterated tetration) 
  
    
      
        
          
            
              
                2 
                ↑↑↑ 
                4 
               
              
                = 
                
                  H 
                  
                    5 
                   
                 
                ( 
                2 
                , 
                4 
                ) 
               
             
            
              
                = 
                2 
                ↑↑ 
                ( 
                2 
                ↑↑ 
                ( 
                2 
                ↑↑ 
                2 
                ) 
                ) 
               
             
            
              
                = 
                2 
                ↑↑ 
                ( 
                2 
                ↑↑ 
                ( 
                2 
                ↑ 
                2 
                ) 
                ) 
               
             
            
              
                = 
                2 
                ↑↑ 
                ( 
                2 
                ↑↑ 
                4 
                ) 
               
             
            
              
                = 
                
                  
                    
                      2 
                      ↑ 
                      ( 
                      2 
                      ↑ 
                      ( 
                      2 
                      ↑ 
                      ⋯ 
                      ) 
                      ) 
                     
                    ⏟ 
                   
                 
                = 
                
                  
                    
                      
                        2 
                        
                          
                            2 
                            
                              
                                ⋯ 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                2 
                ↑↑ 
                4 
                
                   copies of  
                 
                2 
                
                  65,536 2s 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}2\uparrow \uparrow \uparrow 4&=H_{5}(2,4)\\&=2\uparrow \uparrow (2\uparrow \uparrow (2\uparrow \uparrow 2))\\&=2\uparrow \uparrow (2\uparrow \uparrow (2\uparrow 2))\\&=2\uparrow \uparrow (2\uparrow \uparrow 4)\\&=\underbrace {2\uparrow (2\uparrow (2\uparrow \cdots ))} \;=\;\underbrace {\;2^{2^{\cdots ^{2}}}} \\&\;\;\;\;\;2\uparrow \uparrow 4{\text{ copies of }}2\;\;\;\;\;{\text{65,536 2s}}\\\end{aligned}}} 
   
  The general definition of the up-arrow notation is as follows (for 
  
    
      
        a 
        ≥ 
        0 
        , 
        n 
        ≥ 
        1 
        , 
        b 
        ≥ 
        0 
       
     
    {\displaystyle a\geq 0,n\geq 1,b\geq 0} 
   
 
  
    
      
        a 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        a 
        , 
        b 
        ) 
        = 
        a 
        [ 
        n 
        + 
        2 
        ] 
        b 
        . 
       
     
    {\displaystyle a\uparrow ^{n}b=H_{n+2}(a,b)=a[n+2]b.} 
   
 
  
    
      
        
          ↑ 
          
            n 
           
         
       
     
    {\displaystyle \uparrow ^{n}} 
   
 n  arrows, so for example
  
    
      
        2 
        ↑↑↑↑ 
        3 
        = 
        2 
        
          ↑ 
          
            4 
           
         
        3. 
       
     
    {\displaystyle 2\uparrow \uparrow \uparrow \uparrow 3=2\uparrow ^{4}3.} 
   
 
The hyperoperations  naturally extend the arithmetic  operations of addition  and multiplication  as follows.
Addition  by a natural number  is defined as iterated incrementation:
  
    
      
        
          
            
              
                
                  H 
                  
                    1 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
                a 
                + 
                b 
                = 
               
              
                a 
                + 
                
                  
                    
                      1 
                      + 
                      1 
                      + 
                      ⋯ 
                      + 
                      1 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                1 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}H_{1}(a,b)=a+b=&a+\underbrace {1+1+\dots +1} \\&b{\mbox{ copies of }}1\end{matrix}}} 
   
 Multiplication  by a natural number  is defined as iterated addition :
  
    
      
        
          
            
              
                
                  H 
                  
                    2 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
                a 
                × 
                b 
                = 
               
              
                
                  
                    
                      a 
                      + 
                      a 
                      + 
                      ⋯ 
                      + 
                      a 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}H_{2}(a,b)=a\times b=&\underbrace {a+a+\dots +a} \\&b{\mbox{ copies of }}a\end{matrix}}} 
   
 For example,
  
    
      
        
          
            
              
                4 
                × 
                3 
               
              
                = 
               
              
                
                  
                    
                      4 
                      + 
                      4 
                      + 
                      4 
                     
                    ⏟ 
                   
                 
               
              
                = 
               
              
                12 
               
             
            
              
                3 
                
                  
                     copies of  
                   
                 
                4 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}4\times 3&=&\underbrace {4+4+4} &=&12\\&&3{\mbox{ copies of }}4\end{matrix}}} 
   
 Exponentiation  for a natural power 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
  
    
      
        
          
            
              
                a 
                ↑ 
                b 
                = 
                
                  H 
                  
                    3 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
                
                  a 
                  
                    b 
                   
                 
                = 
               
              
                
                  
                    
                      a 
                      × 
                      a 
                      × 
                      ⋯ 
                      × 
                      a 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\uparrow b=H_{3}(a,b)=a^{b}=&\underbrace {a\times a\times \dots \times a} \\&b{\mbox{ copies of }}a\end{matrix}}} 
   
 For example,
  
    
      
        
          
            
              
                4 
                ↑ 
                3 
                = 
                
                  4 
                  
                    3 
                   
                 
                = 
               
              
                
                  
                    
                      4 
                      × 
                      4 
                      × 
                      4 
                     
                    ⏟ 
                   
                 
               
              
                = 
               
              
                64 
               
             
            
              
                3 
                
                  
                     copies of  
                   
                 
                4 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}4\uparrow 3=4^{3}=&\underbrace {4\times 4\times 4} &=&64\\&3{\mbox{ copies of }}4\end{matrix}}} 
   
 Tetration  is defined as iterated exponentiation, which Knuth denoted by a “double arrow”:
  
    
      
        
          
            
              
                a 
                ↑↑ 
                b 
                = 
                
                  H 
                  
                    4 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
               
              
                
                  
                    
                      a 
                      
                        
                          a 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            a 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
              
                = 
               
              
                
                  
                    
                      a 
                      ↑ 
                      ( 
                      a 
                      ↑ 
                      ( 
                      ⋯ 
                      ↑ 
                      a 
                      ) 
                      ) 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\uparrow \uparrow b=H_{4}(a,b)=&\underbrace {a^{a^{{}^{.\,^{.\,^{.\,^{a}}}}}}} &=&\underbrace {a\uparrow (a\uparrow (\cdots \uparrow a))} \\&b{\mbox{ copies of }}a&&b{\mbox{ copies of }}a\end{matrix}}} 
   
 For example,
  
    
      
        
          
            
              
                4 
                ↑↑ 
                3 
                = 
               
              
                
                  
                    
                      4 
                      
                        
                          4 
                          
                            4 
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
              
                = 
               
              
                
                  
                    
                      4 
                      ↑ 
                      ( 
                      4 
                      ↑ 
                      4 
                      ) 
                     
                    ⏟ 
                   
                 
               
              
                = 
               
              
                
                  4 
                  
                    256 
                   
                 
               
               
            
              
                3 
                
                  
                     copies of  
                   
                 
                4 
               
              
                3 
                
                  
                     copies of  
                   
                 
                4 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}4\uparrow \uparrow 3=&\underbrace {4^{4^{4}}} &=&\underbrace {4\uparrow (4\uparrow 4)} &=&4^{256}&&\\&3{\mbox{ copies of }}4&&3{\mbox{ copies of }}4\end{matrix}}} 
   
 Expressions are evaluated from right to left, as the operators are defined to be right-associative .
According to this definition,
  
    
      
        3 
        ↑↑ 
        2 
        = 
        
          3 
          
            3 
           
         
        = 
        27 
       
     
    {\displaystyle 3\uparrow \uparrow 2=3^{3}=27} 
   
 
  
    
      
        3 
        ↑↑ 
        3 
        = 
        
          3 
          
            
              3 
              
                3 
               
             
           
         
        = 
        
          3 
          
            27 
           
         
        = 
        7 
        , 
        625 
        , 
        597 
        , 
        484 
        , 
        987 
       
     
    {\displaystyle 3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987} 
   
 
  
    
      
        3 
        ↑↑ 
        4 
        = 
        
          3 
          
            
              3 
              
                
                  3 
                  
                    3 
                   
                 
               
             
           
         
        = 
        
          3 
          
            
              3 
              
                27 
               
             
           
         
        = 
        
          3 
          
            7625597484987 
           
         
       
     
    {\displaystyle 3\uparrow \uparrow 4=3^{3^{3^{3}}}=3^{3^{27}}=3^{7625597484987}} 
   
 
  
    
      
        3 
        ↑↑ 
        5 
        = 
        
          3 
          
            
              3 
              
                
                  3 
                  
                    
                      3 
                      
                        3 
                       
                     
                   
                 
               
             
           
         
        = 
        
          3 
          
            
              3 
              
                
                  3 
                  
                    27 
                   
                 
               
             
           
         
        = 
        
          3 
          
            
              3 
              
                7625597484987 
               
             
           
         
       
     
    {\displaystyle 3\uparrow \uparrow 5=3^{3^{3^{3^{3}}}}=3^{3^{3^{27}}}=3^{3^{7625597484987}}} 
   
 etc. This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here.
Pentation , defined as iterated tetration, is represented by the “triple arrow”:
  
    
      
        
          
            
              
                a 
                ↑↑↑ 
                b 
                = 
                
                  H 
                  
                    5 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
               
              
                
                  
                    
                      
                        a 
                        
                         
                       
                      ↑↑ 
                      ( 
                      a 
                      ↑↑ 
                      ( 
                      ⋯ 
                      ↑↑ 
                      a 
                      ) 
                      ) 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow b=H_{5}(a,b)=&\underbrace {a_{}\uparrow \uparrow (a\uparrow \uparrow (\cdots \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}} 
   
 Hexation , defined as iterated pentation, is represented by the “quadruple arrow”:
  
    
      
        
          
            
              
                a 
                ↑↑↑↑ 
                b 
                = 
                
                  H 
                  
                    6 
                   
                 
                ( 
                a 
                , 
                b 
                ) 
                = 
               
              
                
                  
                    
                      
                        a 
                        
                         
                       
                      ↑↑↑ 
                      ( 
                      a 
                      ↑↑↑ 
                      ( 
                      ⋯ 
                      ↑↑↑ 
                      a 
                      ) 
                      ) 
                     
                    ⏟ 
                   
                 
               
             
            
              
                b 
                
                  
                     copies of  
                   
                 
                a 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow \uparrow b=H_{6}(a,b)=&\underbrace {a_{}\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (\cdots \uparrow \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}} 
   
 and so on. The general rule is that an 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        n 
        − 
        1 
       
     
    {\displaystyle n-1} 
   
 
  
    
      
        
          
            
              
                a 
                  
                
                  
                    
                      
                        
                          ↑ 
                          
                           
                         
                        ↑ 
                        ⋯ 
                        ↑ 
                       
                      ⏟ 
                     
                   
                  
                    n 
                   
                 
                  
                b 
                = 
                
                  
                    
                      
                        a 
                          
                        
                          
                            
                              
                                ↑ 
                                ⋯ 
                                ↑ 
                               
                              ⏟ 
                             
                           
                          
                            n 
                            − 
                            1 
                           
                         
                          
                        ( 
                        a 
                          
                        
                          
                            
                              
                                
                                  ↑ 
                                  
                                   
                                 
                                ⋯ 
                                ↑ 
                               
                              ⏟ 
                             
                           
                          
                            n 
                            − 
                            1 
                           
                         
                          
                        ( 
                        ⋯ 
                          
                        
                          
                            
                              
                                
                                  ↑ 
                                  
                                   
                                 
                                ⋯ 
                                ↑ 
                               
                              ⏟ 
                             
                           
                          
                            n 
                            − 
                            1 
                           
                         
                          
                        a 
                        ) 
                        ) 
                       
                      ⏟ 
                     
                   
                  
                    b 
                    
                       copies of  
                     
                    a 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\ \underbrace {\uparrow _{}\uparrow \!\!\cdots \!\!\uparrow } _{n}\ b=\underbrace {a\ \underbrace {\uparrow \!\!\cdots \!\!\uparrow } _{n-1}\ (a\ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ (\cdots \ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ a))} _{b{\text{ copies of }}a}\end{matrix}}} 
   
 Examples:
  
    
      
        3 
        ↑↑↑ 
        2 
        = 
        3 
        ↑↑ 
        3 
        = 
        
          3 
          
            
              3 
              
                3 
               
             
           
         
        = 
        
          3 
          
            27 
           
         
        = 
        7 
        , 
        625 
        , 
        597 
        , 
        484 
        , 
        987 
       
     
    {\displaystyle 3\uparrow \uparrow \uparrow 2=3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987} 
   
 
  
    
      
        
          
            
              
                3 
                ↑↑↑ 
                3 
               
              
                = 
                3 
                ↑↑ 
                ( 
                3 
                ↑↑ 
                3 
                ) 
               
             
            
              
                = 
                3 
                ↑↑ 
                ( 
                3 
                ↑ 
                3 
                ↑ 
                3 
                ) 
               
             
            
              
                = 
                
                  
                    
                      
                        
                          
                            
                              3 
                              ↑ 
                              3 
                              ↑ 
                              ⋯ 
                              ↑ 
                              3 
                             
                            ⏟ 
                           
                         
                       
                     
                    
                      
                        3 
                        ↑ 
                        3 
                        ↑ 
                        3 
                        
                          
                             copies of  
                           
                         
                        3 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        
                          
                            
                              3 
                              ↑ 
                              3 
                              ↑ 
                              ⋯ 
                              ↑ 
                              3 
                             
                            ⏟ 
                           
                         
                       
                     
                    
                      
                        
                          
                            7,625,597,484,987 copies of 3 
                           
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        
                          
                            
                              3 
                              
                                
                                  3 
                                  
                                    
                                      3 
                                      
                                        
                                          3 
                                          
                                            
                                              ⋅ 
                                              
                                                
                                                  ⋅ 
                                                  
                                                    
                                                      ⋅ 
                                                      
                                                        
                                                          ⋅ 
                                                          
                                                            3 
                                                           
                                                         
                                                       
                                                     
                                                   
                                                 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                            ⏟ 
                           
                         
                       
                     
                    
                      
                        
                          
                            7,625,597,484,987 copies of 3 
                           
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}3\uparrow \uparrow \uparrow 3&=3\uparrow \uparrow (3\uparrow \uparrow 3)\\&=3\uparrow \uparrow (3\uparrow 3\uparrow 3)\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\3\uparrow 3\uparrow 3{\mbox{ copies of }}3\end{matrix}}\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\\&={\begin{matrix}\underbrace {3^{3^{3^{3^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{3}}}}}}}}} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\end{aligned}}} 
   
 In expressions such as 
  
    
      
        
          a 
          
            b 
           
         
       
     
    {\displaystyle a^{b}} 
   
 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 programming languages  and plain-text e-mail  — do not support superscript  typesetting. People have adopted the linear notation 
  
    
      
        a 
        ↑ 
        b 
       
     
    {\displaystyle a\uparrow b} 
   
 character set  does not contain an up arrow, the caret  (^) is used instead.
The superscript notation 
  
    
      
        
          a 
          
            b 
           
         
       
     
    {\displaystyle a^{b}} 
   
 
  
    
      
        a 
        ↑ 
        b 
       
     
    {\displaystyle a\uparrow b} 
   
 
  
    
      
        a 
        
          ↑ 
          
            n 
           
         
        b 
       
     
    {\displaystyle a\uparrow ^{n}b} 
   
 
  
    
      
        a 
        
          ↑ 
          
            4 
           
         
        b 
        = 
        a 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle a\uparrow ^{4}b=a\uparrow \uparrow \uparrow \uparrow b} 
   
 
Writing out up-arrow notation in terms of powers [ edit ] Attempting to write 
  
    
      
        a 
        ↑↑ 
        b 
       
     
    {\displaystyle a\uparrow \uparrow b} 
   
 power tower .
For example: 
  
    
      
        a 
        ↑↑ 
        4 
        = 
        a 
        ↑ 
        ( 
        a 
        ↑ 
        ( 
        a 
        ↑ 
        a 
        ) 
        ) 
        = 
        
          a 
          
            
              a 
              
                
                  a 
                  
                    a 
                   
                 
               
             
           
         
       
     
    {\displaystyle a\uparrow \uparrow 4=a\uparrow (a\uparrow (a\uparrow a))=a^{a^{a^{a}}}} 
   
  If 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
  
    
      
        a 
        ↑↑ 
        b 
        = 
        
         
        
          
            
              
                a 
                
                  
                    a 
                    
                      
                        . 
                        
                          
                            . 
                            
                              . 
                              
                                a 
                               
                             
                           
                         
                       
                     
                   
                 
               
              ⏟ 
             
           
          
            b 
           
         
       
     
    {\displaystyle a\uparrow \uparrow b={}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{b}} 
   
 Continuing with this notation, 
  
    
      
        a 
        ↑↑↑ 
        b 
       
     
    {\displaystyle a\uparrow \uparrow \uparrow b} 
   
 
  
    
      
        a 
        ↑↑↑ 
        4 
        = 
        a 
        ↑↑ 
        ( 
        a 
        ↑↑ 
        ( 
        a 
        ↑↑ 
        a 
        ) 
        ) 
        = 
        
          
            
              
                a 
                
                  
                    a 
                    
                      
                        . 
                        
                          
                            . 
                            
                              . 
                              
                                a 
                               
                             
                           
                         
                       
                     
                   
                 
               
              ⏟ 
             
           
          
            
              
                
                  
                    a 
                    
                      
                        a 
                        
                          
                            . 
                            
                              
                                . 
                                
                                  . 
                                  
                                    a 
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                  ⏟ 
                 
               
              
                
                  
                    
                      
                        a 
                        
                          
                            a 
                            
                              
                                . 
                                
                                  
                                    . 
                                    
                                      . 
                                      
                                        a 
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                      ⏟ 
                     
                   
                  
                    a 
                   
                 
               
             
           
         
       
     
    {\displaystyle a\uparrow \uparrow \uparrow 4=a\uparrow \uparrow (a\uparrow \uparrow (a\uparrow \uparrow a))=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}}} 
   
 Again, if 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
  
    
      
        a 
        ↑↑↑ 
        b 
        = 
        
          
            
              
                
                  a 
                  
                    
                      a 
                      
                        
                          . 
                          
                            
                              . 
                              
                                . 
                                
                                  a 
                                 
                               
                             
                           
                         
                       
                     
                   
                 
                ⏟ 
               
             
            
              
                
                  
                    
                      a 
                      
                        
                          a 
                          
                            
                              . 
                              
                                
                                  . 
                                  
                                    . 
                                    
                                      a 
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
                
                  
                    
                      
                        ⋮ 
                        ⏟ 
                       
                     
                    
                      a 
                     
                   
                 
               
             
           
          } 
         
        b 
       
     
    {\displaystyle a\uparrow \uparrow \uparrow b=\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}b} 
   
 Furthermore, 
  
    
      
        a 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle a\uparrow \uparrow \uparrow \uparrow b} 
   
 
  
    
      
        a 
        ↑↑↑↑ 
        4 
        = 
        a 
        ↑↑↑ 
        ( 
        a 
        ↑↑↑ 
        ( 
        a 
        ↑↑↑ 
        a 
        ) 
        ) 
        = 
        
          
            
              
                
                  
                    
                      
                        
                          a 
                          
                            
                              a 
                              
                                
                                  . 
                                  
                                    
                                      . 
                                      
                                        . 
                                        
                                          a 
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                        ⏟ 
                       
                     
                    
                      
                        
                          
                            
                              a 
                              
                                
                                  a 
                                  
                                    
                                      . 
                                      
                                        
                                          . 
                                          
                                            . 
                                            
                                              a 
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                            ⏟ 
                           
                         
                        
                          
                            
                              
                                ⋮ 
                                ⏟ 
                               
                             
                            
                              a 
                             
                           
                         
                       
                     
                   
                  } 
                 
                
                  
                    
                      
                        a 
                        
                          
                            a 
                            
                              
                                . 
                                
                                  
                                    . 
                                    
                                      . 
                                      
                                        a 
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                      ⏟ 
                     
                   
                  
                    
                      
                        
                          
                            a 
                            
                              
                                a 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          . 
                                          
                                            a 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                          ⏟ 
                         
                       
                      
                        
                          
                            
                              ⋮ 
                              ⏟ 
                             
                           
                          
                            a 
                           
                         
                       
                     
                   
                 
               
              } 
             
            
              
                
                  
                    a 
                    
                      
                        a 
                        
                          
                            . 
                            
                              
                                . 
                                
                                  . 
                                  
                                    a 
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                  ⏟ 
                 
               
              
                
                  
                    
                      
                        a 
                        
                          
                            a 
                            
                              
                                . 
                                
                                  
                                    . 
                                    
                                      . 
                                      
                                        a 
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                      ⏟ 
                     
                   
                  
                    
                      
                        
                          ⋮ 
                          ⏟ 
                         
                       
                      
                        a 
                       
                     
                   
                 
               
             
           
          } 
         
        a 
       
     
    {\displaystyle a\uparrow \uparrow \uparrow \uparrow 4=a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow a))=\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a} 
   
 And more generally:
  
    
      
        a 
        ↑↑↑↑ 
        b 
        = 
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  a 
                                  
                                    
                                      a 
                                      
                                        
                                          . 
                                          
                                            
                                              . 
                                              
                                                . 
                                                
                                                  a 
                                                 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                                ⏟ 
                               
                             
                            
                              
                                
                                  
                                    
                                      a 
                                      
                                        
                                          a 
                                          
                                            
                                              . 
                                              
                                                
                                                  . 
                                                  
                                                    . 
                                                    
                                                      a 
                                                     
                                                   
                                                 
                                               
                                             
                                           
                                         
                                       
                                     
                                    ⏟ 
                                   
                                 
                                
                                  
                                    
                                      
                                        ⋮ 
                                        ⏟ 
                                       
                                     
                                    
                                      a 
                                     
                                   
                                 
                               
                             
                           
                          } 
                         
                        
                          
                            
                              
                                a 
                                
                                  
                                    a 
                                    
                                      
                                        . 
                                        
                                          
                                            . 
                                            
                                              . 
                                              
                                                a 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                              ⏟ 
                             
                           
                          
                            
                              
                                
                                  
                                    a 
                                    
                                      
                                        a 
                                        
                                          
                                            . 
                                            
                                              
                                                . 
                                                
                                                  . 
                                                  
                                                    a 
                                                   
                                                 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                  ⏟ 
                                 
                               
                              
                                
                                  
                                    
                                      ⋮ 
                                      ⏟ 
                                     
                                   
                                  
                                    a 
                                   
                                 
                               
                             
                           
                         
                       
                      } 
                     
                    ⋯ 
                   
                  } 
                 
                a 
               
              ⏟ 
             
           
          
            b 
           
         
       
     
    {\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\underbrace {\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\cdots \right\}a} _{b}} 
   
 This might be carried out indefinitely to represent 
  
    
      
        a 
        
          ↑ 
          
            n 
           
         
        b 
       
     
    {\displaystyle a\uparrow ^{n}b} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
The Rudy Rucker notation 
  
    
      
        
          
            b 
           
         
        a 
       
     
    {\displaystyle ^{b}a} 
   
 tetration  allows us to make these diagrams slightly simpler while still employing a geometric representation (we could call these tetration towers ).
  
    
      
        a 
        ↑↑ 
        b 
        = 
        
          
           
          
            b 
           
         
        a 
       
     
    {\displaystyle a\uparrow \uparrow b={}^{b}a} 
   
 
  
    
      
        a 
        ↑↑↑ 
        b 
        = 
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    a 
                                   
                                 
                                . 
                               
                             
                            . 
                           
                         
                        . 
                       
                     
                    a 
                   
                 
                a 
               
              ⏟ 
             
           
          
            b 
           
         
       
     
    {\displaystyle a\uparrow \uparrow \uparrow b=\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{b}} 
   
 
  
    
      
        a 
        ↑↑↑↑ 
        b 
        = 
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      a 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          . 
                         
                       
                      a 
                     
                   
                  a 
                 
                ⏟ 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          a 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          a 
                         
                       
                      a 
                     
                    ⏟ 
                   
                 
                
                  
                    
                      
                        ⋮ 
                        ⏟ 
                       
                     
                    
                      a 
                     
                   
                 
               
             
           
          } 
         
        b 
       
     
    {\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\left.\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {\vdots } _{a}}}\right\}b} 
   
 Finally, as an example, the fourth Ackermann number 
  
    
      
        4 
        
          ↑ 
          
            4 
           
         
        4 
       
     
    {\displaystyle 4\uparrow ^{4}4} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    4 
                                   
                                 
                                . 
                               
                             
                            . 
                           
                         
                        . 
                       
                     
                    4 
                   
                 
                4 
               
              ⏟ 
             
           
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        4 
                                       
                                     
                                    . 
                                   
                                 
                                . 
                               
                             
                            . 
                           
                         
                        4 
                       
                     
                    4 
                   
                  ⏟ 
                 
               
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          
                                            4 
                                           
                                         
                                        . 
                                       
                                     
                                    . 
                                   
                                 
                                . 
                               
                             
                            4 
                           
                         
                        4 
                       
                      ⏟ 
                     
                   
                  
                    4 
                   
                 
               
             
           
         
        = 
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    4 
                                   
                                 
                                . 
                               
                             
                            . 
                           
                         
                        . 
                       
                     
                    4 
                   
                 
                4 
               
              ⏟ 
             
           
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        4 
                                       
                                     
                                    . 
                                   
                                 
                                . 
                               
                             
                            . 
                           
                         
                        4 
                       
                     
                    4 
                   
                  ⏟ 
                 
               
              
                
                  
                    
                      
                        
                          
                            4 
                           
                         
                        4 
                       
                     
                    4 
                   
                 
                4 
               
             
           
         
       
     
    {\displaystyle \underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{4}}}=\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{^{^{^{4}4}4}4}}} 
   
 Some numbers are so large that multiple arrows of Knuth's up-arrow notation become too cumbersome; then an n -arrow operator  
  
    
      
        
          ↑ 
          
            n 
           
         
       
     
    {\displaystyle \uparrow ^{n}} 
   
 hyper operators .
Some numbers are so large that even that notation is not sufficient. The Conway chained arrow notation  can then be used: a chain of three elements is equivalent with the other notations, but a chain of four or more is even more powerful.
  
    
      
        
          
            
              
                a 
                
                  ↑ 
                  
                    n 
                   
                 
                b 
               
              
                = 
               
              
                a 
                [ 
                n 
                + 
                2 
                ] 
                b 
               
              
                = 
               
              
                a 
                → 
                b 
                → 
                n 
               
             
            
              
                
                  (Knuth) 
                 
               
              
                
                  (hyperoperation) 
                 
               
              
                
                  (Conway) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}a\uparrow ^{n}b&=&a[n+2]b&=&a\to b\to n\\{\text{(Knuth)}}&&{\text{(hyperoperation)}}&&{\text{(Conway)}}\end{matrix}}} 
   
 
  
    
      
        6 
        ↑↑ 
        4 
        = 
        
          
            
              
                6 
                
                  
                    6 
                    
                      
                        . 
                        
                          
                            . 
                            
                              
                                . 
                                
                                  6 
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
              ⏟ 
             
           
          
            4 
           
         
       
     
    {\displaystyle 6\uparrow \uparrow 4=\underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}} 
   
 
  
    
      
        6 
        ↑↑ 
        4 
        = 
        
          6 
          
            
              6 
              
                
                  6 
                  
                    6 
                   
                 
               
             
           
         
        = 
        
          6 
          
            
              6 
              
                46 
                , 
                656 
               
             
           
         
       
     
    {\displaystyle 6\uparrow \uparrow 4=6^{6^{6^{6}}}=6^{6^{46,656}}} 
   
 
  
    
      
        
          
            
              
                6 
                
                  
                    6 
                    
                      
                        . 
                        
                          
                            . 
                            
                              
                                . 
                                
                                  6 
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
              ⏟ 
             
           
          
            4 
           
         
       
     
    {\displaystyle \underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}} 
   
 
  
    
      
        10 
        ↑ 
        ( 
        3 
        × 
        10 
        ↑ 
        ( 
        3 
        × 
        10 
        ↑ 
        15 
        ) 
        + 
        3 
        ) 
        = 
        
          
            
              
                100000 
                … 
                000 
               
              ⏟ 
             
           
          
            
              
                
                  
                    300000 
                    … 
                    003 
                   
                  ⏟ 
                 
               
              
                
                  
                    
                      
                        300000 
                        … 
                        000 
                       
                      ⏟ 
                     
                   
                  
                    15 
                   
                 
               
             
           
         
       
     
    {\displaystyle 10\uparrow (3\times 10\uparrow (3\times 10\uparrow 15)+3)=\underbrace {100000\ldots 000} _{\underbrace {300000\ldots 003} _{\underbrace {300000\ldots 000} _{15}}}} 
   
 
  
    
      
        
          10 
          
            3 
            × 
            
              10 
              
                3 
                × 
                
                  10 
                  
                    15 
                   
                 
               
             
            + 
            3 
           
         
       
     
    {\displaystyle 10^{3\times 10^{3\times 10^{15}}+3}} 
   
 Even faster-growing functions can be categorized using an ordinal  analysis called the fast-growing hierarchy . The fast-growing hierarchy uses successive function iteration and diagonalization to systematically create faster-growing functions from some base function 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 
  
    
      
        
          f 
          
            0 
           
         
        ( 
        x 
        ) 
        = 
        x 
        + 
        1 
       
     
    {\displaystyle f_{0}(x)=x+1} 
   
 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{2}(x)} 
   
 
  
    
      
        
          f 
          
            3 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{3}(x)} 
   
 
  
    
      
        
          f 
          
            ω 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{\omega }(x)} 
   
 Ackermann function , 
  
    
      
        
          f 
          
            ω 
            + 
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{\omega +1}(x)} 
   
 Graham's number , and 
  
    
      
        
          f 
          
            
              ω 
              
                2 
               
             
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{\omega ^{2}}(x)} 
   
 
These functions are all computable. Even faster computable functions, such as the Goodstein sequence  and the TREE sequence  require the usage of large ordinals, may occur in certain combinatorical and proof-theoretic contexts. There exist functions which grow uncomputably fast, such as the Busy Beaver , whose very nature will be completely out of reach from any up-arrow, or even any ordinal-based analysis.
Without reference to hyperoperation  the up-arrow operators can be formally defined by
  
    
      
        a 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
          
            { 
            
              
                
                  
                    a 
                    
                      b 
                     
                   
                  , 
                 
                
                  
                    if  
                   
                  n 
                  = 
                  1 
                  ; 
                 
               
              
                
                  1 
                  , 
                 
                
                  
                    if  
                   
                  n 
                  > 
                  1 
                  
                     and  
                   
                  b 
                  = 
                  0 
                  ; 
                 
               
              
                
                  a 
                  
                    ↑ 
                    
                      n 
                      − 
                      1 
                     
                   
                  ( 
                  a 
                  
                    ↑ 
                    
                      n 
                     
                   
                  ( 
                  b 
                  − 
                  1 
                  ) 
                  ) 
                  , 
                 
                
                  
                    otherwise  
                   
                 
               
             
             
         
       
     
    {\displaystyle a\uparrow ^{n}b={\begin{cases}a^{b},&{\text{if }}n=1;\\1,&{\text{if }}n>1{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}} 
   
 for all integers 
  
    
      
        a 
        , 
        b 
        , 
        n 
       
     
    {\displaystyle a,b,n} 
   
 
  
    
      
        a 
        ≥ 
        0 
        , 
        n 
        ≥ 
        1 
        , 
        b 
        ≥ 
        0 
       
     
    {\displaystyle a\geq 0,n\geq 1,b\geq 0} 
   
 [ nb 1] 
This definition uses exponentiation  
  
    
      
        ( 
        a 
        
          ↑ 
          
            1 
           
         
        b 
        = 
        a 
        ↑ 
        b 
        = 
        
          a 
          
            b 
           
         
        ) 
       
     
    {\displaystyle (a\uparrow ^{1}b=a\uparrow b=a^{b})} 
   
 tetration  
  
    
      
        ( 
        a 
        
          ↑ 
          
            2 
           
         
        b 
        = 
        a 
        ↑↑ 
        b 
        ) 
       
     
    {\displaystyle (a\uparrow ^{2}b=a\uparrow \uparrow b)} 
   
 hyperoperation sequence  except it omits the three more basic operations of succession , addition  and multiplication .
One can alternatively choose multiplication  
  
    
      
        ( 
        a 
        
          ↑ 
          
            0 
           
         
        b 
        = 
        a 
        × 
        b 
        ) 
       
     
    {\displaystyle (a\uparrow ^{0}b=a\times b)} 
   
 exponentiation  becomes repeated multiplication. The formal definition would be
  
    
      
        a 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
          
            { 
            
              
                
                  a 
                  × 
                  b 
                  , 
                 
                
                  
                    if  
                   
                  n 
                  = 
                  0 
                  ; 
                 
               
              
                
                  1 
                  , 
                 
                
                  
                    if  
                   
                  n 
                  > 
                  0 
                  
                     and  
                   
                  b 
                  = 
                  0 
                  ; 
                 
               
              
                
                  a 
                  
                    ↑ 
                    
                      n 
                      − 
                      1 
                     
                   
                  ( 
                  a 
                  
                    ↑ 
                    
                      n 
                     
                   
                  ( 
                  b 
                  − 
                  1 
                  ) 
                  ) 
                  , 
                 
                
                  
                    otherwise  
                   
                 
               
             
             
         
       
     
    {\displaystyle a\uparrow ^{n}b={\begin{cases}a\times b,&{\text{if }}n=0;\\1,&{\text{if }}n>0{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}} 
   
 for all integers 
  
    
      
        a 
        , 
        b 
        , 
        n 
       
     
    {\displaystyle a,b,n} 
   
 
  
    
      
        a 
        ≥ 
        0 
        , 
        n 
        ≥ 
        0 
        , 
        b 
        ≥ 
        0 
       
     
    {\displaystyle a\geq 0,n\geq 0,b\geq 0} 
   
 
Note, however, that Knuth did not define the "nil-arrow" (
  
    
      
        
          ↑ 
          
            0 
           
         
       
     
    {\displaystyle \uparrow ^{0}} 
   
 
  
    
      
        
          H 
          
            n 
           
         
        ( 
        a 
        , 
        b 
        ) 
        = 
        a 
        [ 
        n 
        ] 
        b 
        = 
        a 
        
          ↑ 
          
            n 
            − 
            2 
           
         
        b 
        
           for  
         
        n 
        ≥ 
        0. 
       
     
    {\displaystyle H_{n}(a,b)=a[n]b=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.} 
   
 The up-arrow operation is a right-associative operation , that is, 
  
    
      
        a 
        ↑ 
        b 
        ↑ 
        c 
       
     
    {\displaystyle a\uparrow b\uparrow c} 
   
 
  
    
      
        a 
        ↑ 
        ( 
        b 
        ↑ 
        c 
        ) 
       
     
    {\displaystyle a\uparrow (b\uparrow c)} 
   
 
  
    
      
        ( 
        a 
        ↑ 
        b 
        ) 
        ↑ 
        c 
       
     
    {\displaystyle (a\uparrow b)\uparrow c} 
   
 
Computing 
  
    
      
        0 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        0 
        , 
        b 
        ) 
        = 
        0 
        [ 
        n 
        + 
        2 
        ] 
        b 
       
     
    {\displaystyle 0\uparrow ^{n}b=H_{n+2}(0,b)=0[n+2]b} 
   
 
0, when n  = 0  [ nb 2]  
1, when n  = 1 and b  = 0   [ nb 1] [ nb 3]  
0, when n  = 1 and b  > 0   [ nb 1] [ nb 3]  
1, when n  > 1 and b  is even (including 0) 
0, when n  > 1 and b  is odd Computing 
  
    
      
        2 
        
          ↑ 
          
            n 
           
         
        b 
       
     
    {\displaystyle 2\uparrow ^{n}b} 
   
 
  
    
      
        
          2 
          
            b 
           
         
       
     
    {\displaystyle 2^{b}} 
   
 
Values of 
  
    
      
        2 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
         
       
     
    {\displaystyle 2\uparrow ^{n}b={}} 
   
 
  
    
      
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        2 
        , 
        b 
        ) 
        = 
        
         
       
     
    {\displaystyle H_{n+2}(2,b)={}} 
   
 
  
    
      
        2 
        [ 
        n 
        + 
        2 
        ] 
        b 
        = 
        
         
       
     
    {\displaystyle 2[n+2]b={}} 
   
 2 → b → n 
 
b 
n 
1
 
2
 
3
 
4
 
5
 
6
 
formula
  
1
 
2 
4 
8 
16 
32 
64 
  
    
      
        
          2 
          
            b 
           
         
       
     
    {\displaystyle 2^{b}} 
   
  
2
 
2 
4 
16 
65,536 
2,003,...,156,736 
212,003,...,428,736 
  
    
      
        2 
        ↑↑ 
        b 
       
     
    {\displaystyle 2\uparrow \uparrow b} 
   
  
3
 
2 
4 
65,536 
24,636,...,948,736 
1,300,...,948,736 
320,146,...,948,736 
  
    
      
        2 
        ↑↑↑ 
        b 
       
     
    {\displaystyle 2\uparrow \uparrow \uparrow b} 
   
  
4
 
2 
4 
24,636,...,948,736 
68,225,...,948,736 
167,167,...,948,736 
3,449,...,948,736 
  
    
      
        2 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle 2\uparrow \uparrow \uparrow \uparrow b} 
   
  
The table is the same as that of the Ackermann function , except for a shift in 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 
We place the numbers 
  
    
      
        
          3 
          
            b 
           
         
       
     
    {\displaystyle 3^{b}} 
   
 
Values of 
  
    
      
        3 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
         
       
     
    {\displaystyle 3\uparrow ^{n}b={}} 
   
 
  
    
      
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        3 
        , 
        b 
        ) 
        = 
        
         
       
     
    {\displaystyle H_{n+2}(3,b)={}} 
   
 
  
    
      
        3 
        [ 
        n 
        + 
        2 
        ] 
        b 
        = 
        
         
       
     
    {\displaystyle 3[n+2]b={}} 
   
 3 → b → n 
 
b 
n 
1
 
2
 
3
 
4
 
5
 
formula
  
1
 
3 
9 
27 
81 
243 
  
    
      
        
          3 
          
            b 
           
         
       
     
    {\displaystyle 3^{b}} 
   
  
2
 
3 
27 
7,625,597,484,987 
12,580,...,739,387 
338,605,...,355,387 
  
    
      
        3 
        ↑↑ 
        b 
       
     
    {\displaystyle 3\uparrow \uparrow b} 
   
  
3
 
3 
7,625,597,484,987 
1,945,...,195,387 
93,652,...,195,387 
4,854,...,195,387 
  
    
      
        3 
        ↑↑↑ 
        b 
       
     
    {\displaystyle 3\uparrow \uparrow \uparrow b} 
   
  
4
 
3 
1,945,...,195,387 
834,215,...,195,387 
25,653,...,195,387 
17,124,...,195,387 
  
    
      
        3 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle 3\uparrow \uparrow \uparrow \uparrow b} 
   
  
We place the numbers 
  
    
      
        
          4 
          
            b 
           
         
       
     
    {\displaystyle 4^{b}} 
   
 
Values of 
  
    
      
        4 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
         
       
     
    {\displaystyle 4\uparrow ^{n}b={}} 
   
 
  
    
      
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        4 
        , 
        b 
        ) 
        = 
        
         
       
     
    {\displaystyle H_{n+2}(4,b)={}} 
   
 
  
    
      
        4 
        [ 
        n 
        + 
        2 
        ] 
        b 
        = 
        
         
       
     
    {\displaystyle 4[n+2]b={}} 
   
 4 → b → n 
 
b 
n 
1
 
2
 
3
 
4
 
5
 
formula
  
1
 
1 
1 
1 
1 
1 
  
    
      
        
          4 
          
            b 
           
         
       
     
    {\displaystyle 4^{b}} 
   
  
2
 
1 
4 
19,728 
603,122,606,263,029,537,... << 19,692 >> ...,149,530,140,391,357,847 
101019727   digits 
  
    
      
        4 
        ↑↑ 
        b 
       
     
    {\displaystyle 4\uparrow \uparrow b} 
   
  
3
 
1 
12 
3,638,334,640,024 
600,225,356,799,454,734,... << 3,638,334,639,988 >> ...,581,273,077,839,447,635 
10103638334640023   digits 
  
    
      
        4 
        ↑↑↑ 
        b 
       
     
    {\displaystyle 4\uparrow \uparrow \uparrow b} 
   
  
4
 
2 
155 
807,230,472,602,822,537,... << 118 >> ...,481,244,990,261,351,117 
1010153   digits 
101010153    digits
 
  
    
      
        4 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle 4\uparrow \uparrow \uparrow \uparrow b} 
   
  
We place the numbers 
  
    
      
        
          10 
          
            b 
           
         
       
     
    {\displaystyle 10^{b}} 
   
 
Values of 
  
    
      
        10 
        
          ↑ 
          
            n 
           
         
        b 
        = 
        
         
       
     
    {\displaystyle 10\uparrow ^{n}b={}} 
   
 
  
    
      
        
          H 
          
            n 
            + 
            2 
           
         
        ( 
        10 
        , 
        b 
        ) 
        = 
        
         
       
     
    {\displaystyle H_{n+2}(10,b)={}} 
   
 
  
    
      
        10 
        [ 
        n 
        + 
        2 
        ] 
        b 
        = 
        
         
       
     
    {\displaystyle 10[n+2]b={}} 
   
 10 → b → n 
 
b 
n 
1
 
2
 
3
 
4
 
5
 
formula
  
1
 
10 
100 
1,000 
10,000 
100,000 
  
    
      
        
          10 
          
            b 
           
         
       
     
    {\displaystyle 10^{b}} 
   
  
2
 
10 
10,000,000,000 
  
    
      
        
          10 
          
            10 
            , 
            000 
            , 
            000 
            , 
            000 
           
         
       
     
    {\displaystyle 10^{10,000,000,000}} 
   
 
  
    
      
        
          10 
          
            
              10 
              
                10 
                , 
                000 
                , 
                000 
                , 
                000 
               
             
           
         
       
     
    {\displaystyle 10^{10^{10,000,000,000}}} 
   
 
  
    
      
        
          10 
          
            
              10 
              
                
                  10 
                  
                    10 
                    , 
                    000 
                    , 
                    000 
                    , 
                    000 
                   
                 
               
             
           
         
       
     
    {\displaystyle 10^{10^{10^{10,000,000,000}}}} 
   
 
  
    
      
        10 
        ↑↑ 
        b 
       
     
    {\displaystyle 10\uparrow \uparrow b} 
   
  
3
 
10 
  
    
      
        
          
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      10 
                      
                       
                      
                        
                          10 
                          
                            
                              
                               
                              
                                . 
                                
                                  
                                    . 
                                    
                                      
                                        . 
                                        
                                          
                                            10 
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        10 
        ↑↑↑ 
        b 
       
     
    {\displaystyle 10\uparrow \uparrow \uparrow b} 
   
  
4
 
10 
  
    
      
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                
                  
                    
                      
                        
                          
                            
                              
                                
                                  
                                    
                                      
                                        
                                          10 
                                         
                                       
                                      . 
                                     
                                   
                                  . 
                                 
                               
                              . 
                             
                           
                          10 
                         
                       
                      10 
                     
                    ⏟ 
                   
                 
               
             
            
              
                10 
                
                  
                     copies of  
                   
                 
                10 
               
             
           
         
       
     
    {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 
   
 
  
    
      
        10 
        ↑↑↑↑ 
        b 
       
     
    {\displaystyle 10\uparrow \uparrow \uparrow \uparrow b} 
   
  
For 2 ≤ b  ≤ 9 the numerical order of the numbers 
  
    
      
        10 
        
          ↑ 
          
            n 
           
         
        b 
       
     
    {\displaystyle 10\uparrow ^{n}b} 
   
 lexicographical order  with n  as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤ b  ≤ 99, and if we start from n  = 1 even for 3 ≤ b  ≤ 9,999,999,999.
Primary Inverse  for left argumentInverse for right argument Related articles 
Examples  Expression 
Related