Generalization of topological interior
In functional analysis , a branch of mathematics, the algebraic interior  or radial kernel  of a subset of a vector space  is a refinement of the concept of the interior .
 
Assume that 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a subset of a vector space 
  
    
      
        X 
        . 
       
     
    {\displaystyle X.} 
   
   
The algebraic interior  (or radial kernel ) of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   with respect to 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is the set of all points at which 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a radial set . 
A point 
  
    
      
        
          a 
          
            0 
           
         
        ∈ 
        A 
       
     
    {\displaystyle a_{0}\in A} 
   
   is called an internal point  of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 [ 2]   and 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is said to be radial  at 
  
    
      
        
          a 
          
            0 
           
         
       
     
    {\displaystyle a_{0}} 
   
   if for every 
  
    
      
        x 
        ∈ 
        X 
       
     
    {\displaystyle x\in X} 
   
   there exists a real number 
  
    
      
        
          t 
          
            x 
           
         
        > 
        0 
       
     
    {\displaystyle t_{x}>0} 
   
   such that for every 
  
    
      
        t 
        ∈ 
        [ 
        0 
        , 
        
          t 
          
            x 
           
         
        ] 
        , 
       
     
    {\displaystyle t\in [0,t_{x}],} 
   
   
  
    
      
        
          a 
          
            0 
           
         
        + 
        t 
        x 
        ∈ 
        A 
        . 
       
     
    {\displaystyle a_{0}+tx\in A.} 
   
   
This last condition can also be written as 
  
    
      
        
          a 
          
            0 
           
         
        + 
        [ 
        0 
        , 
        
          t 
          
            x 
           
         
        ] 
        x 
        ⊆ 
        A 
       
     
    {\displaystyle a_{0}+[0,t_{x}]x\subseteq A} 
   
   where the set 
  
    
      
        
          a 
          
            0 
           
         
        + 
        [ 
        0 
        , 
        
          t 
          
            x 
           
         
        ] 
        x 
          
        := 
          
        
          { 
          
            
              a 
              
                0 
               
             
            + 
            t 
            x 
            : 
            t 
            ∈ 
            [ 
            0 
            , 
            
              t 
              
                x 
               
             
            ] 
           
          } 
         
       
     
    {\displaystyle a_{0}+[0,t_{x}]x~:=~\left\{a_{0}+tx:t\in [0,t_{x}]\right\}} 
   
   
is the line segment (or closed interval) starting at 
  
    
      
        
          a 
          
            0 
           
         
       
     
    {\displaystyle a_{0}} 
   
   and ending at 
  
    
      
        
          a 
          
            0 
           
         
        + 
        
          t 
          
            x 
           
         
        x 
        ; 
       
     
    {\displaystyle a_{0}+t_{x}x;} 
   
   
this line segment is a subset of 
  
    
      
        
          a 
          
            0 
           
         
        + 
        [ 
        0 
        , 
        ∞ 
        ) 
        x 
        , 
       
     
    {\displaystyle a_{0}+[0,\infty )x,} 
   
   which is the ray  emanating from 
  
    
      
        
          a 
          
            0 
           
         
       
     
    {\displaystyle a_{0}} 
   
   in the direction of 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   (that is, parallel to/a translation of 
  
    
      
        [ 
        0 
        , 
        ∞ 
        ) 
        x 
       
     
    {\displaystyle [0,\infty )x} 
   
  ). 
Thus geometrically, an interior point of a subset 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a point 
  
    
      
        
          a 
          
            0 
           
         
        ∈ 
        A 
       
     
    {\displaystyle a_{0}\in A} 
   
   with the property that in every possible direction (vector) 
  
    
      
        x 
        ≠ 
        0 
        , 
       
     
    {\displaystyle x\neq 0,} 
   
   
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   contains some (non-degenerate) line segment starting at 
  
    
      
        
          a 
          
            0 
           
         
       
     
    {\displaystyle a_{0}} 
   
   and heading in that direction (i.e. a subset of the ray 
  
    
      
        
          a 
          
            0 
           
         
        + 
        [ 
        0 
        , 
        ∞ 
        ) 
        x 
       
     
    {\displaystyle a_{0}+[0,\infty )x} 
   
  ). 
The algebraic interior of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   (with respect to 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  ) is the set of all such points. That is to say, it is the subset of points contained in a given set with respect to which it is radial  points of the set.[ 3]  
If 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
   is a linear subspace of 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   and 
  
    
      
        A 
        ⊆ 
        X 
       
     
    {\displaystyle A\subseteq X} 
   
   then this definition can be generalized to the algebraic interior of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   with respect to 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
   is:
  
    
      
        
          aint 
          
            M 
           
         
         
        A 
        := 
        
          { 
          
            a 
            ∈ 
            X 
            : 
            
               for all  
             
            m 
            ∈ 
            M 
            , 
            
               there exists some  
             
            
              t 
              
                m 
               
             
            > 
            0 
            
               such that  
             
            a 
            + 
            
              [ 
              
                0 
                , 
                
                  t 
                  
                    m 
                   
                 
               
              ] 
             
            ⋅ 
            m 
            ⊆ 
            A 
           
          } 
         
        . 
       
     
    {\displaystyle \operatorname {aint} _{M}A:=\left\{a\in X:{\text{ for all }}m\in M,{\text{ there exists some }}t_{m}>0{\text{ such that }}a+\left[0,t_{m}\right]\cdot m\subseteq A\right\}.} 
   
  
where 
  
    
      
        
          aint 
          
            M 
           
         
         
        A 
        ⊆ 
        A 
       
     
    {\displaystyle \operatorname {aint} _{M}A\subseteq A} 
   
   always holds and if 
  
    
      
        
          aint 
          
            M 
           
         
         
        A 
        ≠ 
        ∅ 
       
     
    {\displaystyle \operatorname {aint} _{M}A\neq \varnothing } 
   
   then 
  
    
      
        M 
        ⊆ 
        aff 
         
        ( 
        A 
        − 
        A 
        ) 
        , 
       
     
    {\displaystyle M\subseteq \operatorname {aff} (A-A),} 
   
   where 
  
    
      
        aff 
         
        ( 
        A 
        − 
        A 
        ) 
       
     
    {\displaystyle \operatorname {aff} (A-A)} 
   
   is the affine hull  of 
  
    
      
        A 
        − 
        A 
       
     
    {\displaystyle A-A} 
   
   (which is equal to 
  
    
      
        span 
         
        ( 
        A 
        − 
        A 
        ) 
       
     
    {\displaystyle \operatorname {span} (A-A)} 
   
  ).
Algebraic closure 
A point 
  
    
      
        x 
        ∈ 
        X 
       
     
    {\displaystyle x\in X} 
   
   is said to be linearly accessible   from a subset 
  
    
      
        A 
        ⊆ 
        X 
       
     
    {\displaystyle A\subseteq X} 
   
   if there exists some 
  
    
      
        a 
        ∈ 
        A 
       
     
    {\displaystyle a\in A} 
   
   such that the line segment 
  
    
      
        [ 
        a 
        , 
        x 
        ) 
        := 
        a 
        + 
        [ 
        0 
        , 
        1 
        ) 
        ( 
        x 
        − 
        a 
        ) 
       
     
    {\displaystyle [a,x):=a+[0,1)(x-a)} 
   
   is contained in 
  
    
      
        A 
        . 
       
     
    {\displaystyle A.} 
   
   
The algebraic closure  of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   with respect to 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  , denoted by 
  
    
      
        
          acl 
          
            X 
           
         
         
        A 
        , 
       
     
    {\displaystyle \operatorname {acl} _{X}A,} 
   
   consists of (
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   and) all points in 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   that are linearly accessible from 
  
    
      
        A 
        . 
       
     
    {\displaystyle A.} 
   
  
 Algebraic Interior (Core)[ edit ]  
In the special case where 
  
    
      
        M 
        := 
        X 
        , 
       
     
    {\displaystyle M:=X,} 
   
   the set 
  
    
      
        
          aint 
          
            X 
           
         
         
        A 
       
     
    {\displaystyle \operatorname {aint} _{X}A} 
   
   is called the algebraic interior   or core   of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   and it is denoted by 
  
    
      
        
          A 
          
            i 
           
         
       
     
    {\displaystyle A^{i}} 
   
   or 
  
    
      
        core 
         
        A 
        . 
       
     
    {\displaystyle \operatorname {core} A.} 
   
   
Formally, if 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is a vector space then the algebraic interior of 
  
    
      
        A 
        ⊆ 
        X 
       
     
    {\displaystyle A\subseteq X} 
   
   is[ 6]   
  
    
      
        
          aint 
          
            X 
           
         
         
        A 
        := 
        core 
         
        ( 
        A 
        ) 
        := 
        
          { 
          
            a 
            ∈ 
            A 
            : 
            
               for all  
             
            x 
            ∈ 
            X 
            , 
            
               there exists some  
             
            
              t 
              
                x 
               
             
            > 
            0 
            , 
            
               such that for all  
             
            t 
            ∈ 
            
              [ 
              
                0 
                , 
                
                  t 
                  
                    x 
                   
                 
               
              ] 
             
            , 
            a 
            + 
            t 
            x 
            ∈ 
            A 
           
          } 
         
        . 
       
     
    {\displaystyle \operatorname {aint} _{X}A:=\operatorname {core} (A):=\left\{a\in A:{\text{ for all }}x\in X,{\text{ there exists some }}t_{x}>0,{\text{ such that for all }}t\in \left[0,t_{x}\right],a+tx\in A\right\}.} 
   
  
We call A  algebraically open  in X  if 
  
    
      
        A 
        = 
        
          aint 
          
            X 
           
         
         
        A 
       
     
    {\displaystyle A=\operatorname {aint} _{X}A} 
   
  
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is non-empty, then these additional subsets are also useful for the statements of many theorems in convex functional analysis (such as the Ursescu theorem ):
  
    
      
        
          
           
          
            i 
            c 
           
         
        A 
        := 
        
          
            { 
            
              
                
                  
                    
                     
                    
                      i 
                     
                   
                  A 
                 
                
                  
                     if  
                   
                  aff 
                   
                  A 
                  
                     is a closed set, 
                   
                 
               
              
                
                  ∅ 
                 
                
                  
                     otherwise 
                   
                 
               
             
             
           
         
       
     
    {\displaystyle {}^{ic}A:={\begin{cases}{}^{i}A&{\text{ if }}\operatorname {aff} A{\text{ is a closed set,}}\\\varnothing &{\text{ otherwise}}\end{cases}}} 
   
  
  
    
      
        
          
           
          
            i 
            b 
           
         
        A 
        := 
        
          
            { 
            
              
                
                  
                    
                     
                    
                      i 
                     
                   
                  A 
                 
                
                  
                     if  
                   
                  span 
                   
                  ( 
                  A 
                  − 
                  a 
                  ) 
                  
                     is a barrelled linear subspace of  
                   
                  X 
                  
                     for any/all  
                   
                  a 
                  ∈ 
                  A 
                  
                    , 
                   
                 
               
              
                
                  ∅ 
                 
                
                  
                     otherwise 
                   
                 
               
             
             
           
         
       
     
    {\displaystyle {}^{ib}A:={\begin{cases}{}^{i}A&{\text{ if }}\operatorname {span} (A-a){\text{ is a barrelled linear subspace of }}X{\text{ for any/all }}a\in A{\text{,}}\\\varnothing &{\text{ otherwise}}\end{cases}}} 
   
  
If 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is a Fréchet space , 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is convex, and 
  
    
      
        aff 
         
        A 
       
     
    {\displaystyle \operatorname {aff} A} 
   
   is closed in 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   then 
  
    
      
        
          
           
          
            i 
            c 
           
         
        A 
        = 
        
          
           
          
            i 
            b 
           
         
        A 
       
     
    {\displaystyle {}^{ic}A={}^{ib}A} 
   
   but in general it is possible to have 
  
    
      
        
          
           
          
            i 
            c 
           
         
        A 
        = 
        ∅ 
       
     
    {\displaystyle {}^{ic}A=\varnothing } 
   
   while 
  
    
      
        
          
           
          
            i 
            b 
           
         
        A 
       
     
    {\displaystyle {}^{ib}A} 
   
   is not  empty.
If 
  
    
      
        A 
        = 
        { 
        x 
        ∈ 
        
          
            R 
           
          
            2 
           
         
        : 
        
          x 
          
            2 
           
         
        ≥ 
        
          x 
          
            1 
           
          
            2 
           
         
        
           or  
         
        
          x 
          
            2 
           
         
        ≤ 
        0 
        } 
        ⊆ 
        
          
            R 
           
          
            2 
           
         
       
     
    {\displaystyle A=\{x\in \mathbb {R} ^{2}:x_{2}\geq x_{1}^{2}{\text{ or }}x_{2}\leq 0\}\subseteq \mathbb {R} ^{2}} 
   
   then 
  
    
      
        0 
        ∈ 
        core 
         
        ( 
        A 
        ) 
        , 
       
     
    {\displaystyle 0\in \operatorname {core} (A),} 
   
   but 
  
    
      
        0 
        ∉ 
        int 
         
        ( 
        A 
        ) 
       
     
    {\displaystyle 0\not \in \operatorname {int} (A)} 
   
   and 
  
    
      
        0 
        ∉ 
        core 
         
        ( 
        core 
         
        ( 
        A 
        ) 
        ) 
        . 
       
     
    {\displaystyle 0\not \in \operatorname {core} (\operatorname {core} (A)).} 
   
  
Suppose 
  
    
      
        A 
        , 
        B 
        ⊆ 
        X 
        . 
       
     
    {\displaystyle A,B\subseteq X.} 
   
   
In general, 
  
    
      
        core 
         
        A 
        ≠ 
        core 
         
        ( 
        core 
         
        A 
        ) 
        . 
       
     
    {\displaystyle \operatorname {core} A\neq \operatorname {core} (\operatorname {core} A).} 
   
   But if 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a convex set  then:
  
    
      
        core 
         
        A 
        = 
        core 
         
        ( 
        core 
         
        A 
        ) 
        , 
       
     
    {\displaystyle \operatorname {core} A=\operatorname {core} (\operatorname {core} A),} 
   
   and 
for all 
  
    
      
        
          x 
          
            0 
           
         
        ∈ 
        core 
         
        A 
        , 
        y 
        ∈ 
        A 
        , 
        0 
        < 
        λ 
        ≤ 
        1 
       
     
    {\displaystyle x_{0}\in \operatorname {core} A,y\in A,0<\lambda \leq 1} 
   
   then 
  
    
      
        λ 
        
          x 
          
            0 
           
         
        + 
        ( 
        1 
        − 
        λ 
        ) 
        y 
        ∈ 
        core 
         
        A 
        . 
       
     
    {\displaystyle \lambda x_{0}+(1-\lambda )y\in \operatorname {core} A.} 
   
   
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is an absorbing subset  of a real vector space if and only if 
  
    
      
        0 
        ∈ 
        core 
         
        ( 
        A 
        ) 
        . 
       
     
    {\displaystyle 0\in \operatorname {core} (A).} 
   
 [ 3]  
  
    
      
        A 
        + 
        core 
         
        B 
        ⊆ 
        core 
         
        ( 
        A 
        + 
        B 
        ) 
       
     
    {\displaystyle A+\operatorname {core} B\subseteq \operatorname {core} (A+B)} 
   
  
  
    
      
        A 
        + 
        core 
         
        B 
        = 
        core 
         
        ( 
        A 
        + 
        B 
        ) 
       
     
    {\displaystyle A+\operatorname {core} B=\operatorname {core} (A+B)} 
   
   if 
  
    
      
        B 
        = 
        core 
         
        B 
        . 
       
     
    {\displaystyle B=\operatorname {core} B.} 
   
  
Both the core and the algebraic closure of a convex set are again convex. 
If 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
   is convex, 
  
    
      
        c 
        ∈ 
        core 
         
        C 
        , 
       
     
    {\displaystyle c\in \operatorname {core} C,} 
   
   and 
  
    
      
        b 
        ∈ 
        
          acl 
          
            X 
           
         
         
        C 
       
     
    {\displaystyle b\in \operatorname {acl} _{X}C} 
   
   then the line segment 
  
    
      
        [ 
        c 
        , 
        b 
        ) 
        := 
        c 
        + 
        [ 
        0 
        , 
        1 
        ) 
        b 
       
     
    {\displaystyle [c,b):=c+[0,1)b} 
   
   is contained in 
  
    
      
        core 
         
        C 
        . 
       
     
    {\displaystyle \operatorname {core} C.} 
   
  
Relation to topological interior [ edit ]  
Let 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   be a topological vector space , 
  
    
      
        int 
       
     
    {\displaystyle \operatorname {int} } 
   
   denote the interior operator, and 
  
    
      
        A 
        ⊆ 
        X 
       
     
    {\displaystyle A\subseteq X} 
   
   then: 
  
    
      
        int 
         
        A 
        ⊆ 
        core 
         
        A 
       
     
    {\displaystyle \operatorname {int} A\subseteq \operatorname {core} A} 
   
  
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is nonempty convex and 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is finite-dimensional, then 
  
    
      
        int 
         
        A 
        = 
        core 
         
        A 
        . 
       
     
    {\displaystyle \operatorname {int} A=\operatorname {core} A.} 
   
  
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is convex with non-empty interior, then 
  
    
      
        int 
         
        A 
        = 
        core 
         
        A 
        . 
       
     
    {\displaystyle \operatorname {int} A=\operatorname {core} A.} 
   
 [ 8]  
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a closed convex set and 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is a complete metric space , then 
  
    
      
        int 
         
        A 
        = 
        core 
         
        A 
        . 
       
     
    {\displaystyle \operatorname {int} A=\operatorname {core} A.} 
   
 [ 9]   
Relative algebraic interior [ edit ]  
If 
  
    
      
        M 
        = 
        aff 
         
        ( 
        A 
        − 
        A 
        ) 
       
     
    {\displaystyle M=\operatorname {aff} (A-A)} 
   
   then the set 
  
    
      
        
          aint 
          
            M 
           
         
         
        A 
       
     
    {\displaystyle \operatorname {aint} _{M}A} 
   
   is denoted by 
  
    
      
        
          
           
          
            i 
           
         
        A 
        := 
        
          aint 
          
            aff 
             
            ( 
            A 
            − 
            A 
            ) 
           
         
         
        A 
       
     
    {\displaystyle {}^{i}A:=\operatorname {aint} _{\operatorname {aff} (A-A)}A} 
   
   and it is called the relative algebraic interior of 
  
    
      
        A 
        . 
       
     
    {\displaystyle A.} 
   
   This name stems from the fact that 
  
    
      
        a 
        ∈ 
        
          A 
          
            i 
           
         
       
     
    {\displaystyle a\in A^{i}} 
   
   if and only if 
  
    
      
        aff 
         
        A 
        = 
        X 
       
     
    {\displaystyle \operatorname {aff} A=X} 
   
   and 
  
    
      
        a 
        ∈ 
        
          
           
          
            i 
           
         
        A 
       
     
    {\displaystyle a\in {}^{i}A} 
   
   (where 
  
    
      
        aff 
         
        A 
        = 
        X 
       
     
    {\displaystyle \operatorname {aff} A=X} 
   
   if and only if 
  
    
      
        aff 
         
        ( 
        A 
        − 
        A 
        ) 
        = 
        X 
       
     
    {\displaystyle \operatorname {aff} (A-A)=X} 
   
  ).
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a subset of a topological vector space 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   then the relative interior  of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is the set
  
    
      
        rint 
         
        A 
        := 
        
          int 
          
            aff 
             
            A 
           
         
         
        A 
        . 
       
     
    {\displaystyle \operatorname {rint} A:=\operatorname {int} _{\operatorname {aff} A}A.} 
   
   
That is, it is the topological interior of A in 
  
    
      
        aff 
         
        A 
        , 
       
     
    {\displaystyle \operatorname {aff} A,} 
   
   which is the smallest affine linear subspace of 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   containing 
  
    
      
        A 
        . 
       
     
    {\displaystyle A.} 
   
   The following set is also useful:
  
    
      
        ri 
         
        A 
        := 
        
          
            { 
            
              
                
                  rint 
                   
                  A 
                 
                
                  
                     if  
                   
                  aff 
                   
                  A 
                  
                     is a closed subspace of  
                   
                  X 
                  
                    , 
                   
                 
               
              
                
                  ∅ 
                 
                
                  
                     otherwise 
                   
                 
               
             
             
           
         
       
     
    {\displaystyle \operatorname {ri} A:={\begin{cases}\operatorname {rint} A&{\text{ if }}\operatorname {aff} A{\text{ is a closed subspace of }}X{\text{,}}\\\varnothing &{\text{ otherwise}}\end{cases}}} 
   
  
Quasi relative interior [ edit ]  
If 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is a subset of a topological vector space 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   then the quasi relative interior  of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is the set
  
    
      
        qri 
         
        A 
        := 
        
          { 
          
            a 
            ∈ 
            A 
            : 
            
              
                cone 
                ¯ 
               
             
            ( 
            A 
            − 
            a 
            ) 
            
               is a linear subspace of  
             
            X 
           
          } 
         
        . 
       
     
    {\displaystyle \operatorname {qri} A:=\left\{a\in A:{\overline {\operatorname {cone} }}(A-a){\text{ is a linear subspace of }}X\right\}.} 
   
  
In a Hausdorff  finite dimensional topological vector space, 
  
    
      
        qri 
         
        A 
        = 
        
          
           
          
            i 
           
         
        A 
        = 
        
          
           
          
            i 
            c 
           
         
        A 
        = 
        
          
           
          
            i 
            b 
           
         
        A 
        . 
       
     
    {\displaystyle \operatorname {qri} A={}^{i}A={}^{ic}A={}^{ib}A.} 
   
  
^   John Cook (May 21, 1988). "Separation of Convex Sets in Linear Topological Spaces"  (PDF) . Retrieved November 14,  2012 .  
 
^ a   b   Jaschke, Stefan; Kuchler, Uwe (2000). "Coherent Risk Measures, Valuation Bounds, and (
  
    
      
        μ 
        , 
        ρ 
       
     
    {\displaystyle \mu ,\rho } 
   
  )-Portfolio Optimization"  (PDF) .  
 
^   Nikolaĭ Kapitonovich Nikolʹskiĭ (1992). Functional analysis I: linear functional analysis . Springer. ISBN  978-3-540-50584-6  .  
 
^   Kantorovitz, Shmuel (2003). Introduction to Modern Analysis . Oxford University Press . p. 134. ISBN  9780198526568  .  
 
^   Bonnans, J. Frederic; Shapiro, Alexander (2000), Perturbation Analysis of Optimization Problems  , Springer series in operations research, Springer, Remark 2.73, p. 56, ISBN  9780387987057   . 
 
  
Aliprantis, Charalambos D. ; Border, Kim C.  (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide   (Third ed.). Berlin: Springer Science & Business Media. ISBN  978-3-540-29587-7  . OCLC  262692874 . 
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces . Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666  . OCLC  144216834 .  
Schaefer, Helmut H. ; Wolff, Manfred P. (1999). Topological Vector Spaces . GTM . Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0  . OCLC  840278135 . 
Schechter, Eric  (1996). Handbook of Analysis and Its Foundations . San Diego, CA: Academic Press. ISBN  978-0-12-622760-4  . OCLC  175294365 . 
Zălinescu, Constantin  (30 July 2002). Convex Analysis in General Vector Spaces  . River Edge, N.J. London: World Scientific Publishing . ISBN  978-981-4488-15-0  . MR  1921556 . OCLC  285163112  – via Internet Archive . 
Spaces 
Theorems Operators Algebras Open problems Applications Advanced topics 
 
Basic concepts Main results Maps Types of sets Set operations Types of TVSs