Result due to Kummer on cyclic extensions of fields that leads to Kummer theory
In abstract algebra , Hilbert's Theorem 90  (or Satz 90 ) is an important result on cyclic extensions  of fields  (or to one of its generalizations) that leads to Kummer theory . In its most basic form, it states that if L /K  is an extension of fields with cyclic Galois group  G  = Gal(L /K ) generated by an element 
  
    
      
        σ 
        , 
       
     
    {\displaystyle \sigma ,} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 L  of relative norm  1, that is
  
    
      
        N 
        ( 
        a 
        ) 
        := 
        a 
        σ 
        ( 
        a 
        ) 
        
          σ 
          
            2 
           
         
        ( 
        a 
        ) 
        ⋯ 
        
          σ 
          
            n 
            − 
            1 
           
         
        ( 
        a 
        ) 
        = 
        1 
        , 
       
     
    {\displaystyle N(a):=a\,\sigma (a)\,\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1,} 
   
 
then there exists 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
 L  such that
  
    
      
        a 
        = 
        b 
        
          / 
         
        σ 
        ( 
        b 
        ) 
        . 
       
     
    {\displaystyle a=b/\sigma (b).} 
   
 
The theorem takes its name from the fact that it is the 90th theorem in David Hilbert 's Zahlbericht  (Hilbert 1897 , 1998 ), although it is originally due to Kummer  (1855 , p.213, 1861 ). 
Often a more general theorem due to Emmy Noether  (1933 ) is given the name, stating that if L /K  is a finite Galois extension  of fields with arbitrary Galois group G  = Gal(L /K ), then the first cohomology  group of G , with coefficients in the multiplicative group of L , is trivial:
  
    
      
        
          H 
          
            1 
           
         
        ( 
        G 
        , 
        
          L 
          
            × 
           
         
        ) 
        = 
        { 
        1 
        } 
        . 
       
     
    {\displaystyle H^{1}(G,L^{\times })=\{1\}.} 
   
 Let 
  
    
      
        L 
        
          / 
         
        K 
       
     
    {\displaystyle L/K} 
   
 quadratic extension  
  
    
      
        
          Q 
         
        ( 
        i 
        ) 
        
          / 
         
        
          Q 
         
       
     
    {\displaystyle \mathbb {Q} (i)/\mathbb {Q} } 
   
 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        σ 
        : 
        c 
        + 
        d 
        i 
        ↦ 
        c 
        − 
        d 
        i 
        . 
       
     
    {\displaystyle \sigma :c+di\mapsto c-di.} 
   
 An element 
  
    
      
        a 
        = 
        x 
        + 
        y 
        i 
       
     
    {\displaystyle a=x+yi} 
   
 
  
    
      
        
          Q 
         
        ( 
        i 
        ) 
       
     
    {\displaystyle \mathbb {Q} (i)} 
   
 
  
    
      
        a 
        σ 
        ( 
        a 
        ) 
        = 
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
       
     
    {\displaystyle a\sigma (a)=x^{2}+y^{2}} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 unit circle . Hilbert's Theorem 90 then states that every such element a  of norm one can be written as
  
    
      
        a 
        = 
        
          
            
              c 
              − 
              d 
              i 
             
            
              c 
              + 
              d 
              i 
             
           
         
        = 
        
          
            
              
                c 
                
                  2 
                 
               
              − 
              
                d 
                
                  2 
                 
               
             
            
              
                c 
                
                  2 
                 
               
              + 
              
                d 
                
                  2 
                 
               
             
           
         
        − 
        
          
            
              2 
              c 
              d 
             
            
              
                c 
                
                  2 
                 
               
              + 
              
                d 
                
                  2 
                 
               
             
           
         
        i 
        , 
       
     
    {\displaystyle a={\frac {c-di}{c+di}}={\frac {c^{2}-d^{2}}{c^{2}+d^{2}}}-{\frac {2cd}{c^{2}+d^{2}}}i,} 
   
 where 
  
    
      
        b 
        = 
        c 
        + 
        d 
        i 
       
     
    {\displaystyle b=c+di} 
   
 c  and d  are both integers. This may be viewed as a rational parametrization of the rational points on the unit circle. Rational points 
  
    
      
        ( 
        x 
        , 
        y 
        ) 
        = 
        ( 
        p 
        
          / 
         
        r 
        , 
        q 
        
          / 
         
        r 
        ) 
       
     
    {\displaystyle (x,y)=(p/r,q/r)} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 Pythagorean triples , i.e. triples 
  
    
      
        ( 
        p 
        , 
        q 
        , 
        r 
        ) 
       
     
    {\displaystyle (p,q,r)} 
   
 
  
    
      
        
          p 
          
            2 
           
         
        + 
        
          q 
          
            2 
           
         
        = 
        
          r 
          
            2 
           
         
       
     
    {\displaystyle p^{2}+q^{2}=r^{2}} 
   
 
The theorem can be stated in terms of group cohomology : if L ×  is the multiplicative group  of any (not necessarily finite) Galois extension L  of a field K  with corresponding Galois group G , then
  
    
      
        
          H 
          
            1 
           
         
        ( 
        G 
        , 
        
          L 
          
            × 
           
         
        ) 
        = 
        { 
        1 
        } 
        . 
       
     
    {\displaystyle H^{1}(G,L^{\times })=\{1\}.} 
   
 Specifically, group cohomology is the cohomology of the complex  whose i- cochains are arbitrary functions from i -tuples of group elements to the multiplicative coefficient group, 
  
    
      
        
          C 
          
            i 
           
         
        ( 
        G 
        , 
        
          L 
          
            × 
           
         
        ) 
        = 
        { 
        ϕ 
        : 
        
          G 
          
            i 
           
         
        → 
        
          L 
          
            × 
           
         
        } 
       
     
    {\displaystyle C^{i}(G,L^{\times })=\{\phi :G^{i}\to L^{\times }\}} 
   
 
  
    
      
        
          d 
          
            i 
           
         
        : 
        
          C 
          
            i 
           
         
        → 
        
          C 
          
            i 
            + 
            1 
           
         
       
     
    {\displaystyle d^{i}:C^{i}\to C^{i+1}} 
   
 
  
    
      
        i 
        = 
        0 
        , 
        1 
       
     
    {\displaystyle i=0,1} 
   
 
  
    
      
        ( 
        
          d 
          
            0 
           
         
        ( 
        b 
        ) 
        ) 
        ( 
        σ 
        ) 
        = 
        b 
        
          / 
         
        
          b 
          
            σ 
           
         
        , 
        
           and  
         
        ( 
        
          d 
          
            1 
           
         
        ( 
        ϕ 
        ) 
        ) 
        ( 
        σ 
        , 
        τ 
        ) 
        = 
        ϕ 
        ( 
        σ 
        ) 
        ϕ 
        ( 
        τ 
        
          ) 
          
            σ 
           
         
        
          / 
         
        ϕ 
        ( 
        σ 
        τ 
        ) 
        , 
       
     
    {\displaystyle (d^{0}(b))(\sigma )=b/b^{\sigma },\quad {\text{ and }}\quad (d^{1}(\phi ))(\sigma ,\tau )\,=\,\phi (\sigma )\phi (\tau )^{\sigma }/\phi (\sigma \tau ),} 
   
 
where 
  
    
      
        
          x 
          
            g 
           
         
       
     
    {\displaystyle x^{g}} 
   
 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        g 
        ∈ 
        G 
       
     
    {\displaystyle g\in G} 
   
 cochain  
  
    
      
        γ 
        = 
        
          γ 
          
            b 
           
         
        : 
        
          G 
          
            0 
           
         
        = 
        i 
        
          d 
          
            G 
           
         
        → 
        
          L 
          
            × 
           
         
       
     
    {\displaystyle \gamma =\gamma _{b}:G^{0}=id_{G}\to L^{\times }} 
   
 
  
    
      
        b 
        ∈ 
        
          L 
          
            × 
           
         
       
     
    {\displaystyle b\in L^{\times }} 
   
 
  
    
      
        
          Z 
          
            1 
           
         
       
     
    {\displaystyle Z^{1}} 
   
 
  
    
      
        
          B 
          
            1 
           
         
       
     
    {\displaystyle B^{1}} 
   
 
  
    
      
        
          
            
              
                
                  Z 
                  
                    1 
                   
                 
               
              
                = 
               
              
                ker 
                 
                
                  d 
                  
                    1 
                   
                 
               
              
                = 
               
              
                { 
                ϕ 
                ∈ 
                
                  C 
                  
                    1 
                   
                 
                
                   satisfying  
                 
                ∀ 
                σ 
                , 
                τ 
                ∈ 
                G 
                : 
                ϕ 
                ( 
                σ 
                τ 
                ) 
                = 
                ϕ 
                ( 
                σ 
                ) 
                ϕ 
                ( 
                τ 
                
                  ) 
                  
                    σ 
                   
                 
                } 
               
             
            
              
                
                   is equal to  
                 
               
             
            
              
                
                  B 
                  
                    1 
                   
                 
               
              
                = 
               
              
                
                  im  
                 
                
                  d 
                  
                    0 
                   
                 
               
              
                = 
               
              
                { 
                ϕ 
                ∈ 
                
                  C 
                  
                    1 
                   
                 
                  
                : 
                ∃ 
                b 
                ∈ 
                
                  L 
                  
                    × 
                   
                 
                
                   such that  
                 
                ϕ 
                ( 
                σ 
                ) 
                = 
                b 
                
                  / 
                 
                
                  b 
                  
                    σ 
                   
                 
                  
                  
                ∀ 
                σ 
                ∈ 
                G 
                } 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{array}{rcl}Z^{1}&=&\ker d^{1}&=&\{\phi \in C^{1}{\text{ satisfying }}\,\,\forall \sigma ,\tau \in G\,\colon \,\,\phi (\sigma \tau )=\phi (\sigma )\,\phi (\tau )^{\sigma }\}\\{\text{ is equal to }}\\B^{1}&=&{\text{im }}d^{0}&=&\{\phi \in C^{1}\ \,\colon \,\,\exists \,b\in L^{\times }{\text{ such that }}\phi (\sigma )=b/b^{\sigma }\ \ \forall \sigma \in G\}.\end{array}}} 
   
 
For cyclic 
  
    
      
        G 
        = 
        { 
        1 
        , 
        σ 
        , 
        … 
        , 
        
          σ 
          
            n 
            − 
            1 
           
         
        } 
       
     
    {\displaystyle G=\{1,\sigma ,\ldots ,\sigma ^{n-1}\}} 
   
 
  
    
      
        ϕ 
        ( 
        σ 
        ) 
        = 
        a 
        ∈ 
        
          L 
          
            × 
           
         
       
     
    {\displaystyle \phi (\sigma )=a\in L^{\times }} 
   
 
  
    
      
        ϕ 
        ( 
        
          σ 
          
            i 
           
         
        ) 
        = 
        a 
        σ 
        ( 
        a 
        ) 
        ⋯ 
        
          σ 
          
            i 
            − 
            1 
           
         
        ( 
        a 
        ) 
       
     
    {\displaystyle \phi (\sigma ^{i})=a\,\sigma (a)\cdots \sigma ^{i-1}(a)} 
   
 
  
    
      
        1 
        = 
        ϕ 
        ( 
        1 
        ) 
        = 
        ϕ 
        ( 
        
          σ 
          
            n 
           
         
        ) 
        = 
        a 
        σ 
        ( 
        a 
        ) 
        ⋯ 
        
          σ 
          
            n 
            − 
            1 
           
         
        ( 
        a 
        ) 
        = 
        N 
        ( 
        a 
        ) 
        . 
       
     
    {\displaystyle 1=\phi (1)=\phi (\sigma ^{n})=a\,\sigma (a)\cdots \sigma ^{n-1}(a)=N(a).} 
   
 
On the other hand, a 1-coboundary is determined by 
  
    
      
        ϕ 
        ( 
        σ 
        ) 
        = 
        b 
        
          / 
         
        
          b 
          
            σ 
           
         
       
     
    {\displaystyle \phi (\sigma )=b/b^{\sigma }} 
   
 
A further generalization is to cohomology with non-abelian coefficients : that if H  is either the general  or special linear group  over L , including 
  
    
      
        
          GL 
          
            1 
           
         
         
        ( 
        L 
        ) 
        = 
        
          L 
          
            × 
           
         
       
     
    {\displaystyle \operatorname {GL} _{1}(L)=L^{\times }} 
   
 
  
    
      
        
          H 
          
            1 
           
         
        ( 
        G 
        , 
        H 
        ) 
        = 
        { 
        1 
        } 
        . 
       
     
    {\displaystyle H^{1}(G,H)=\{1\}.} 
   
 
Another generalization is to a scheme X :
  
    
      
        
          H 
          
            et 
           
          
            1 
           
         
        ( 
        X 
        , 
        
          
            G 
           
          
            m 
           
         
        ) 
        = 
        
          H 
          
            1 
           
         
        ( 
        X 
        , 
        
          
            
              O 
             
           
          
            X 
           
          
            × 
           
         
        ) 
        = 
        Pic 
         
        ( 
        X 
        ) 
        , 
       
     
    {\displaystyle H_{\text{et}}^{1}(X,\mathbb {G} _{m})=H^{1}(X,{\mathcal {O}}_{X}^{\times })=\operatorname {Pic} (X),} 
   
 where 
  
    
      
        Pic 
         
        ( 
        X 
        ) 
       
     
    {\displaystyle \operatorname {Pic} (X)} 
   
 
  
    
      
        
          
            
              O 
             
           
          
            X 
           
          
            × 
           
         
       
     
    {\displaystyle {\mathcal {O}}_{X}^{\times }} 
   
 Zariski topology , and 
  
    
      
        
          
            G 
           
          
            m 
           
         
       
     
    {\displaystyle \mathbb {G} _{m}} 
   
 [ 1] 
There is yet another generalization to Milnor K-theory  which plays a role in Voevodsky's  proof of the Milnor conjecture .
Let 
  
    
      
        L 
        
          / 
         
        K 
       
     
    {\displaystyle L/K} 
   
 
  
    
      
        n 
        , 
       
     
    {\displaystyle n,} 
   
 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        Gal 
         
        ( 
        L 
        
          / 
         
        K 
        ) 
       
     
    {\displaystyle \operatorname {Gal} (L/K)} 
   
 
  
    
      
        a 
        ∈ 
        L 
       
     
    {\displaystyle a\in L} 
   
 
  
    
      
        N 
        ( 
        a 
        ) 
        := 
        a 
        σ 
        ( 
        a 
        ) 
        
          σ 
          
            2 
           
         
        ( 
        a 
        ) 
        ⋯ 
        
          σ 
          
            n 
            − 
            1 
           
         
        ( 
        a 
        ) 
        = 
        1. 
       
     
    {\displaystyle N(a):=a\sigma (a)\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1.} 
   
 By clearing denominators , solving 
  
    
      
        a 
        = 
        x 
        
          / 
         
        
          σ 
          
            − 
            1 
           
         
        ( 
        x 
        ) 
        ∈ 
        L 
       
     
    {\displaystyle a=x/\sigma ^{-1}(x)\in L} 
   
 
  
    
      
        a 
        
          σ 
          
            − 
            1 
           
         
        ( 
        ⋅ 
        ) 
        : 
        L 
        → 
        L 
       
     
    {\displaystyle a\sigma ^{-1}(\cdot ):L\to L} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 
  
    
      
        
          
            { 
            
              
                
                  
                    1 
                    
                      L 
                     
                   
                  ⊗ 
                  a 
                  
                    σ 
                    
                      − 
                      1 
                     
                   
                  ( 
                  ⋅ 
                  ) 
                  : 
                  L 
                  
                    ⊗ 
                    
                      K 
                     
                   
                  L 
                  → 
                  L 
                  
                    ⊗ 
                    
                      K 
                     
                   
                  L 
                 
               
              
                
                  ℓ 
                  ⊗ 
                  
                    ℓ 
                    ′ 
                   
                  ↦ 
                  ℓ 
                  ⊗ 
                  a 
                  
                    σ 
                    
                      − 
                      1 
                     
                   
                  ( 
                  
                    ℓ 
                    ′ 
                   
                  ) 
                  . 
                 
               
             
             
         
       
     
    {\displaystyle {\begin{cases}1_{L}\otimes a\sigma ^{-1}(\cdot ):L\otimes _{K}L\to L\otimes _{K}L\\\ell \otimes \ell '\mapsto \ell \otimes a\sigma ^{-1}(\ell ').\end{cases}}} 
   
 The primitive element theorem  gives 
  
    
      
        L 
        = 
        K 
        ( 
        α 
        ) 
       
     
    {\displaystyle L=K(\alpha )} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        f 
        ( 
        t 
        ) 
        = 
        ( 
        t 
        − 
        α 
        ) 
        ( 
        t 
        − 
        σ 
        ( 
        α 
        ) 
        ) 
        ⋯ 
        
          ( 
          
            t 
            − 
            
              σ 
              
                n 
                − 
                1 
               
             
            ( 
            α 
            ) 
           
          ) 
         
        ∈ 
        K 
        [ 
        t 
        ] 
        , 
       
     
    {\displaystyle f(t)=(t-\alpha )(t-\sigma (\alpha ))\cdots \left(t-\sigma ^{n-1}(\alpha )\right)\in K[t],} 
   
 we can identify
  
    
      
        L 
        
          ⊗ 
          
            K 
           
         
        L 
        
          
            
              
                → 
               
              
                ∼ 
               
             
           
         
        L 
        
          ⊗ 
          
            K 
           
         
        K 
        [ 
        t 
        ] 
        
          / 
         
        f 
        ( 
        t 
        ) 
        
          
            
              
                → 
               
              
                ∼ 
               
             
           
         
        L 
        [ 
        t 
        ] 
        
          / 
         
        f 
        ( 
        t 
        ) 
        
          
            
              
                → 
               
              
                ∼ 
               
             
           
         
        
          L 
          
            n 
           
         
       
     
    {\displaystyle L\otimes _{K}L{\stackrel {\sim }{\to }}L\otimes _{K}K[t]/f(t){\stackrel {\sim }{\to }}L[t]/f(t){\stackrel {\sim }{\to }}L^{n}} 
   
 via 
  
    
      
        ℓ 
        ⊗ 
        p 
        ( 
        α 
        ) 
        ↦ 
        ℓ 
        
          ( 
          
            p 
            ( 
            α 
            ) 
            , 
            p 
            ( 
            σ 
            α 
            ) 
            , 
            … 
            , 
            p 
            ( 
            
              σ 
              
                n 
                − 
                1 
               
             
            α 
            ) 
           
          ) 
         
        . 
       
     
    {\displaystyle \ell \otimes p(\alpha )\mapsto \ell \left(p(\alpha ),p(\sigma \alpha ),\ldots ,p(\sigma ^{n-1}\alpha )\right).} 
   
 Here we wrote the second factor as a 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
Under this identification, our map becomes
  
    
      
        
          
            { 
            
              
                
                  a 
                  
                    σ 
                    
                      − 
                      1 
                     
                   
                  ( 
                  ⋅ 
                  ) 
                  : 
                  
                    L 
                    
                      n 
                     
                   
                  → 
                  
                    L 
                    
                      n 
                     
                   
                 
               
              
                
                  ℓ 
                  
                    ( 
                    
                      p 
                      ( 
                      α 
                      ) 
                      , 
                      … 
                      , 
                      p 
                      ( 
                      
                        σ 
                        
                          n 
                          − 
                          1 
                         
                       
                      α 
                      ) 
                      ) 
                      ↦ 
                      ℓ 
                      ( 
                      a 
                      p 
                      ( 
                      
                        σ 
                        
                          n 
                          − 
                          1 
                         
                       
                      α 
                      ) 
                      , 
                      σ 
                      a 
                      p 
                      ( 
                      α 
                      ) 
                      , 
                      … 
                      , 
                      
                        σ 
                        
                          n 
                          − 
                          1 
                         
                       
                      a 
                      p 
                      ( 
                      
                        σ 
                        
                          n 
                          − 
                          2 
                         
                       
                      α 
                      ) 
                     
                    ) 
                   
                  . 
                 
               
             
             
         
       
     
    {\displaystyle {\begin{cases}a\sigma ^{-1}(\cdot ):L^{n}\to L^{n}\\\ell \left(p(\alpha ),\ldots ,p(\sigma ^{n-1}\alpha ))\mapsto \ell (ap(\sigma ^{n-1}\alpha ),\sigma ap(\alpha ),\ldots ,\sigma ^{n-1}ap(\sigma ^{n-2}\alpha )\right).\end{cases}}} 
   
 That is to say under this map 
  
    
      
        ( 
        
          ℓ 
          
            1 
           
         
        , 
        … 
        , 
        
          ℓ 
          
            n 
           
         
        ) 
        ↦ 
        ( 
        a 
        
          ℓ 
          
            n 
           
         
        , 
        σ 
        a 
        
          ℓ 
          
            1 
           
         
        , 
        … 
        , 
        
          σ 
          
            n 
            − 
            1 
           
         
        a 
        
          ℓ 
          
            n 
            − 
            1 
           
         
        ) 
        . 
       
     
    {\displaystyle (\ell _{1},\ldots ,\ell _{n})\mapsto (a\ell _{n},\sigma a\ell _{1},\ldots ,\sigma ^{n-1}a\ell _{n-1}).} 
   
 
  
    
      
        ( 
        1 
        , 
        σ 
        a 
        , 
        σ 
        a 
        
          σ 
          
            2 
           
         
        a 
        , 
        … 
        , 
        σ 
        a 
        ⋯ 
        
          σ 
          
            n 
            − 
            1 
           
         
        a 
        ) 
       
     
    {\displaystyle (1,\sigma a,\sigma a\sigma ^{2}a,\ldots ,\sigma a\cdots \sigma ^{n-1}a)} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
Hilbert, David  (1897), "Die Theorie der algebraischen Zahlkörper" , Jahresbericht der Deutschen Mathematiker-Vereinigung  (in German), 4 : 175– 546, ISSN  0012-0456 Hilbert, David  (1998), The theory of algebraic number fields Springer-Verlag , ISBN  978-3-540-62779-1 MR  1646901 Kummer, Ernst Eduard (1855), "Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke." , Journal für die reine und angewandte Mathematik 50 : 212– 232, doi :10.1515/crll.1855.50.212 , ISSN  0075-4102  Kummer, Ernst Eduard (1861), "Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist" , Abdruck aus den Abhandlungen der KGL. Akademie der Wissenschaften zu Berlin  (in German), Reprinted in volume 1 of his collected works, pages 699–839 Chapter II of J.S. Milne, Class Field Theory , available at his website [1] . 
Neukirch, Jürgen ; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields , Grundlehren der Mathematischen Wissenschaften , vol. 323, Berlin: Springer-Verlag, ISBN  978-3-540-66671-4 MR  1737196 , Zbl  0948.11001 Noether, Emmy  (1933), "Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper." , Mathematische Annalen 108  (1): 411– 419, doi :10.1007/BF01452845 , ISSN  0025-5831 , Zbl  0007.29501 Snaith, Victor P. (1994), Galois module structure , Fields Institute monographs, Providence, RI: American Mathematical Society , ISBN  0-8218-0264-X Zbl  0830.11042  
English 
Wikisource  has original text related to this article: