Sodium cyclopentadienide
|
| |||
NaCp synthesized in an inert atmosphere
| |||
| Names | |||
|---|---|---|---|
| Preferred IUPAC name
Sodium cyclopentadienide | |||
| Other names
Sodium cyclopentadienylide, Cyclopentadienylsodium
| |||
| Identifiers | |||
3D model (JSmol)
|
|||
| ChemSpider | |||
| ECHA InfoCard | 100.023.306 | ||
| EC Number |
| ||
PubChem CID
|
|||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
| Properties | |||
| C5H5Na | |||
| Molar mass | 88.085 g·mol−1 | ||
| Appearance | colorless solid | ||
| Density | 1.113 g/cm3 | ||
| decomposition | |||
| Solubility | THF | ||
| Hazards | |||
| Occupational safety and health (OHS/OSH): | |||
Main hazards
|
flammable | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |||
Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp, where Cp− is the cyclopentadienide anion.[1] Sodium cyclopentadienide is a colorless solid, although samples often are pink owing to traces of oxidized impurities.[2]
Preparation
[edit]The first salt of cyclopentadienide to be reported was potassium cyclopentadienide, prepared by Johannes Thiele. In 1901 there was not much interest in the topic.[3]
Sodium cyclopentadienyl is prepared from cyclopentadiene and molten sodium metal:[4][2] Sodium can also be provided as "sodium wire" or "sodium sand", the fine suspension produced when molten sodium is mixed with refluxing xylene, then cooled.[5][6] The highly exothermic metallation can undergo catastrophic thermal runaway without proper cooling, as occurred in the T2 Laboratories explosion and fire.[7]
Alternatively, many reagents deprotonate cyclopentadiene; it has pKa 15. Early work used Grignard reagents as bases, but sodium hydride is more convenient nowadays:[8]
- NaH + C5H6 → NaC5H5 + H2
Sodium cyclopentadienide is commercially available as a solution in THF.
Applications
[edit]Sodium cyclopentadienide is a common reagent for the preparation of metallocenes. For example, the preparation of ferrocene[5] and zirconocene dichloride:[9]
- 2 NaC5H5 + FeCl2 → Fe(C5H5)2 + 2 NaCl
- ZrCl4(thf)2 + 2 NaCp → (C5H5)2ZrCl2 + 2 NaCl + 2 THF
Sodium cyclopentadienide is also used for the preparation of substituted cyclopentadienyl derivatives such as the ester and formyl derivatives:[10]
- NaC5H5 + O=C(OEt)2 → NaC5H4CO2Et + NaOEt
These compounds are used to prepare substituted metallocenes such as 1,1'-ferrocenedicarboxylic acid.[11]
Structure
[edit]The nature of NaCp depends strongly on its medium and for the purposes of planning syntheses; the reagent is often represented as a salt Na+
C
5H−
5. Crystalline solvent-free NaCp, which is rarely encountered, is a "polydecker" sandwich complex, consisting of an infinite chain of alternating Na+ centers sandwiched between μ-η5:η5-C5H5 ligands.[12] As a solution in donor solvents, NaCp is highly solvated, especially at the alkali metal as suggested by the isolability of the adduct Na(tmeda)Cp.[13]
In contrast to alkali metal cyclopentadienides, tetrabutylammonium cyclopentadienide (Bu
4N+
C
5H−
5) was found to be supported entirely by ionic bonding and its structure is representative of the structure of the cyclopentadienide anion (C
5H−
5, Cp−) in the solid state. However, the anion deviates somewhat from a planar, regular pentagon, with C–C bond lengths ranging from 138.0 -140.1 pm and C–C–C bond angles ranging from 107.5–108.8°.[14]
See also
[edit]References
[edit]- ^ International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC–IUPAC. ISBN 0-85404-438-8. p. 262. Electronic version.
- ^ a b Tarun K. Panda, Michael T. Gamer, Peter W. Roesky "An Improved Synthesis of Sodium and Potassium Cyclopentadienide" Organometallics, 2003, 22, 877–878.doi:10.1021/om0207865
- ^ Johannes Thiele (January 1901). "Ueber Abkömmlinge des Cyclopentadiëns". Berichte der Deutschen Chemischen Gesellschaft. 34 (1): 68–71. doi:10.1002/CBER.19010340114. ISSN 0365-9496. Wikidata Q126217369.
- ^ Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, p. 139, ISBN 0-471-84997-9
- ^ a b Wilkinson, Geoffrey (1963). "Ferrocene". Organic Syntheses; Collected Volumes, vol. 4, p. 473.
- ^ Partridge, John J.; Chadha, Naresh K.; Uskokovic, Milan R. (1990). "An asymmetric hydroboration of 5-substituted cyclopentadienes: synthesis of methyl (1R,5R)-5-hydroxy-2-cyclopentene-1-acetate". Organic Syntheses
{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 7, p. 339. - ^ "T2 Laboratories Inc. Reactive Chemical Explosion". US Chemical Safety Board. USCSB. Retrieved 29 April 2016.
- ^ Girolami, G. S.; Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry. CA: University Science Books: Mill Valley. ISBN 0935702482.
{{cite book}}: CS1 maint: publisher location (link) - ^ Wilkinson, G.; Birmingham, J. G. (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". J. Am. Chem. Soc. 76 (17): 4281–84. Bibcode:1954JAChS..76.4281W. doi:10.1021/ja01646a008.
- ^ Macomber, D. W.; Hart, W. P.; Rausch, M. D. (1982). "Functionally Substituted Cyclopentadienyl Metal Compounds". Adv. Organomet. Chem. Advances in Organometallic Chemistry. 21: 1–55. doi:10.1016/S0065-3055(08)60377-9. ISBN 9780120311217.
- ^ Petrov, Alex R.; Jess, Kristof; Freytag, Matthias; Jones, Peter G.; Tamm, Matthias (2013). "Large-Scale Preparation of 1,1′-Ferrocenedicarboxylic Acid, a Key Compound for the Synthesis of 1,1′-Disubstituted Ferrocene Derivatives". Organometallics. 32 (20): 5946–5954. doi:10.1021/om4004972.
- ^ Robert E. Dinnebier; Ulrich Behrens & Falk Olbrich (1997). "Solid State Structures of Cyclopentadienyllithium, -sodium, and -potassium. Determination by High-Resolution Powder Diffraction". Organometallics. 16 (17): 3855–3858. doi:10.1021/om9700122.
- ^ Elschenbroich, C. (2006). Organometallics. Wiley-VCH: Weinheim. ISBN 978-3-527-29390-2.
- ^ Reetz, Manfred T.; Hütte, Stephan; Goddard, Richard (1995-03-01). "Tetrabutylammonium Salts of 2-Nitropropane, Cyclopentadiene and 9-Ethylfluorene: Crystal Structures and Use in Anionic Polymerization". Zeitschrift für Naturforschung B. 50 (3): 415–422. doi:10.1515/znb-1995-0316. ISSN 1865-7117. S2CID 45791403.




